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1 Homology theory

We recall a few facts about the fundamental group:

• It assigns to any path connected topological space X with a base point x ∈ X an algebraic
object, a group π1(X, x). The assignment is functorial, i.e. for a continuous map f : X →
Y we get a group homomorphism f∗ : π(X, x) → π1(Y, f(x)). Homotopic maps f ' g
induce the same maps on the fundamental group, f∗ = g∗.

• The fundamental group is computable invariant, most notably due to the theorem of
Seifert-van Kampen.

• The invariant crucially enters in covering theory: if a topological space X is sufficiently
connected, the equivalence classes of path-connected coverings are classified by conjugacy
classes of subgroups of π1(X).

• However, for CW complexes, it is insensitive to n-cells with n > 3. As a consequence, it
cannot distinguish spheres Sn for different n > 2.

A possible remedy is to consider continuous maps In → M , with I = [0, 1], up to homo-
topy relative boundary. But the corresponding homotopy groups πn(M) are difficult to
compute, even for spaces as fundamental as spheres. For example, for the 2-sphere πn(S2)
is non-zero, although the 2-sphere does not have cells in dimensions greater than 2.

Homology is a computable algebraic invariant that is sensitive to higher cells as well; but it
takes some effort to define it. In particular, we will have rather huge objects in intermediate
steps to which we turn now:

1.1 Chain complexes

Homology is defined using algebraic objects called chain complexes.

Definition 1.1.1
A chain complex is a sequence of abelian groups, (Cn)n∈Z, together with homomorphisms
dn : Cn → Cn−1 for n ∈ Z, such that dn−1 ◦ dn = 0.

Let R be an (associative) ring with unit 1R. A chain complex of R-modules can analogously
be defined as a sequence of R-modules (Cn)n∈Z with R-linear maps dn : Cn → Cn−1 such that
dn−1 ◦ dn = 0.

Definition 1.1.2
We fix the following terminology:

• The homomorphisms dn are called differentials or boundary operators.

• The elements x ∈ Cn are called n-chains.

• Any x ∈ Cn such that dnx = 0 is called an n-cycle. We denote the group of n-cycles by

Zn(C) := ker(dn) = {x ∈ Cn | dnx = 0}.

• Any x ∈ Cn of the form x = dn+1y for some y ∈ Cn+1 is called an n-boundary.

Bn(C) := Im(dn+1) = {dn+1y, y ∈ Cn+1}.
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The cycles and boundaries form subgroups of the group of chains. The identity dn ◦ dn+1 = 0
implies that the image of dn+1 is a subgroup of the kernel of dn and thus

Bn(C) ⊂ Zn(C).

We often drop the subscript n from the boundary maps and just write C∗ for the chain
complex.

Definition 1.1.3
The abelian group Hn(C) := Zn(C)/Bn(C) is called the nth homology group of the complex
C∗.

We denote by [c] ∈ Hn(C) the equivalence class of a cycle c ∈ Zn(C). If c, c′ ∈ Cn are such
that c − c′ is a boundary, then c is said to be homologous to c′. This defines an equivalence
relation on chains. A complex is called acyclic, if its homology except in degree 0 vanishes.

Examples 1.1.4.

1. Consider the complex with

Cn =

{
Z n = 0, 1

0 otherwise

Here, the only non-zero differential is d1; let it be the multiplication with N ∈ N, then

Hn(C) =

{
Z/NZ n = 0

0 otherwise.

2. Take Cn = Z for all n ∈ Z and consider differentials

dn =

{
idZ n odd

0 n even.

The homology of this chain complex vanishes in all degrees.

3. Consider Cn = Z for all n ∈ Z again, but let all boundary maps be trivial. The homology
of this chain complex equals Z in all degrees.

We need morphisms of chain complexes:

Definition 1.1.5
Let C∗ and D∗ be two chain complexes. A chain map f : C∗ → D∗ is a sequence of homomor-

phisms fn : Cn → Dn such that dDn ◦ fn = fn−1 ◦ dCn for all n, i.e., the diagram

Cn
dCn //

fn
��

Cn−1

fn−1

��
Dn

dDn // Dn−1

commutes for all n.

A chain map f sends cycles to cycles, since

dDn fn(c) = fn−1(dCn c) = 0 for a cycle c ,
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and boundaries to boundaries, since

fn(dCn+1λ) = dDn+1fn+1(λ) .

We therefore obtain an induced map of homology groups

Hn(f) : Hn(C)→ Hn(D)

via Hn(f)[c] = [fnc].

Examples 1.1.6.

1. There is a chain map from the chain complex mentioned in Example 1.1.4.1 to the chain
complex D∗ that is concentrated in degree zero and has D0 = Z/NZ.

0 //

��

Z ·N //

��

Z //

��

0

��
0 // 0 // ZN // 0

Note that (f0)∗ is an isomorphism on the zeroth homology group; all homology groups
are isomorphic.

2. Are there chain maps between the complexes from Examples 1.1.4.2. and 1.1.4.3?

Lemma 1.1.7.
If f : C∗ → D∗ and g : D∗ → E∗ are two chain maps, then Hn(g) ◦Hn(f) = Hn(g ◦ f) for all n.

We next study situations in which two chain maps induce the same map on homology.

Definition 1.1.8
A chain homotopy H between two chain maps f, g : C∗ → D∗ is a sequence of homomorphisms
(Hn)n∈Z with Hn : Cn → Dn+1 such that for all n

dDn+1 ◦Hn +Hn−1 ◦ dCn = fn − gn.

. . .
dCn+2 // Cn+1

Hn+1

ww

dCn+1 //

fn+1

��
gn+1

		

Cn
Hn

ww

dCn //

fn
��

gn

		

Cn−1

Hn−1

ww

dCn−1 //

fn−1

��
gn−1

		

. . .

. . .
dDn+2 // Dn+1

dDn+1 // Dn
dDn // Dn−1

dDn−1 // . . .

If such an H exists, then the chain maps f and g are said to be (chain) homotopic. We
write f ' g.

We will see in Section 1.4 geometrically defined examples of chain homotopies.

Proposition 1.1.9.

1. Being chain homotopic is an equivalence relation on chain maps.

2. If f and g are homotopic, then Hn(f) = Hn(g) for all n.

Proof.

1. If H is a homotopy from f to g, then −H is a homotopy from g to f . Each chain map f
is homotopic to itself with chain homotopy H = 0. If f is homotopic to g via H and g is
homotopic to h via K, then f is homotopic to h via H +K.
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2. We have for every cycle c ∈ Zn(C∗):

Hn(f)[c]−Hn(g)[c] = [fnc− gnc] = [dDn+1 ◦Hn(c)] + [Hn−1 ◦ dCn (c)] = 0.

Here, the class of the first term vanishes; in the second term dCn c = 0, since c is a cycle.

�

Definition 1.1.10
Let f : C∗ → D∗ be a chain map. We call f a chain homotopy equivalence, if there exists a
chain map g : D∗ → C∗ such that g ◦ f ' idC∗ and f ◦ g ' idD∗ . The chain complexes C∗ and
D∗ are said to be chain homotopically equivalent.

Chain homotopically equivalent chain complexes have isomorphic homology. However, chain
complexes with isomorphic homology do not have to be chain homotopically equivalent, cf.
Example 1.1.6.1: there is no non-zero morphism of abelian groups ZN → Z.

Definition 1.1.11
If C∗ and C ′∗ are chain complexes, then their direct sum, C∗ ⊕ C ′∗, is the chain complex with

(C∗ ⊕ C ′∗)n = Cn ⊕ C ′n = Cn × C ′n

with differential d = d⊕ d′ given by

d⊕(c, c′) = (dc, d′c′).

Similarly, if (C
(j)
∗ , d(j))j∈J is a family of chain complexes, then we can define their direct

sum as follows:

(
⊕
j∈J

C(j)
∗ )n :=

⊕
j∈J

C(j)
n

as abelian groups and the differential d⊕ is defined via the property that its restriction to the
jth summand is d(j).

1.2 Singular homology

In the definition of the fundamental group, we test a topological space X by (homotopy classes
of) maps S1 → X. In the definition of singular homology, we use maps from higher-dimensional
objects, simplices.

Let v0, . . . , vn be n+ 1 points in Rn+1. Consider the convex hull

K(v0, . . . , vn) := {
n∑
i=0

tivi|
n∑
i=0

ti = 1, ti > 0} ⊂ Rn+1.

Definition 1.2.1
If the vectors v1 − v0, . . . , vn − v0 are linearly independent, then K(v0, . . . , vn) is the simplex
generated by v0, . . . , vn. We denote such a simplex by simp(v0, . . . , vn).

Note that simplex really means “simplex with an ordering of its vertices”.
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Example 1.2.2.
1. Denote by ei ∈ Rn+1 the vector that has an entry 1 in coordinate i+ 1 and is zero in all

other coordinates. The standard topological n-simplex is ∆n := simp(e0, . . . , en).

2. The first examples of standard topological simplices are:

• ∆0 is the point e0 = 1 ∈ R.

• ∆1 is the line segment in R2 between e0 = (1, 0) ∈ R2 and e1 = (0, 1) ∈ R2.

• ∆2 is a triangle in R3 with vertices e0, e1 and e2 and ∆3 is homeomorphic to a
tetrahedron.

3. The coordinate description of the standard n-simplex in Rn+1 is

∆n = {(t0, . . . , tn) ∈ Rn+1|
n∑
i=1

ti = 1, ti > 0}.

We consider the standard simplex ∆n as a subset ∆n ⊂ Rn+1 ⊂ Rn+2 ⊂ . . ..

The boundary of ∆1 consists of two copies of ∆0, the boundary of ∆2 consists of three
copies of ∆1. In general, the boundary of ∆n consists of n+ 1 copies of ∆n−1.

We describe the boundary by the following (n+ 1) face maps for 0 6 i 6 n

di = dn−1
i : ∆n−1 ↪→ ∆n; (t0, . . . , tn−1) 7→ (t0, . . . , ti−1, 0, ti, . . . , tn−1).

The image of dn−1
i in ∆n is the face that is opposite to the vertex ei. It is the (n−1)-simplex

generated by the n− 1-tuple e0, . . . , ei−1, ei+1, . . . , en of vectors in Rn+1.

Lemma 1.2.3.
Concerning the composition of face maps, the following rule holds:

dn−1
i ◦ dn−2

j = dn−1
j ◦ dn−2

i−1 , for all 0 6 j < i 6 n.

Example: face maps for ∆0 and composition into ∆2: d2 ◦ d0 = d0 ◦ d1.

Proof.
Both expressions yield

dn−1
i ◦ dn−2

j (t0, . . . , tn−2) = (t0, . . . , tj−1, 0, tj . . . , ti−2, 0, ti−1, . . . , tn−2)
= dn−1

j dn−2
i−1 (t0, . . . , tn−2).

�

Definition 1.2.4
Let X be an arbitrary topological space, X 6= ∅. A singular n-simplex in X is a continuous
map α : ∆n → X.

Note, that α is just required to be continuous. (It does not make sense to require it to be
smooth. We do not require α to be injective either.) In comparison to the definition of the
fundamental group, note that we do not identify simplices and we do not fix a base point.

We want to be able to express the idea that the boundary of a 1-simplex, i.e. of an interval,
is the the difference of its endpoints. To this end, we have to be able to add and subtract
0-simplices.

We recall some algebraic notions:
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Remark 1.2.5.

1. Any abelian group A can be seen as a Z-module with n.a := a+ . . .+ a︸ ︷︷ ︸
n−times

for n ∈ N and

a ∈ A and (−n).a := −n.a. Thus, abelian groups are in bijection with Z-modules. An
abelian group A is called free over a subset B ⊂ A, if B is a Z-basis, i.e. if any element
a ∈ Z can be uniquely written as a Z-linear combination of elements in B.

2. The group Zr is free abelian with basis {e1, . . . , er} with ei = (0, . . . , 0, 1, 0, . . . , 0). The
group Z2 is not free, since it does not admit a basis: the vector 1 ∈ Z2 is not free since
2 · 1 = 0.

3. A free abelian group F with basis B can be characterized by the following universal
property: any map f : B → A of sets into an arbitrary abelian group A can be extended
uniquely to a group homomorphism h : F → A, i.e. h(b) = f(b) for all b ∈ B,

HomSet(B,A) ∼= Homgroup(F,A) .

4. Any subgroup of a free abelian group F is a free abelian group of smaller rank.

Definition 1.2.6
Let X be a topological space. Let Sn(X) be the free abelian group generated by all singular
n-simplices in X. We call Sn(X) the n-th singular chain module of X.

Remarks 1.2.7.

1. Elements of the singular chain group Sn(X) are thus sums
∑

i∈I λiαi with λi ∈ Z and
λi = 0 for almost all i ∈ I and αi : ∆n → X a singular n-simplex. All sums are effectively
finite sums.

2. For all n > 0 there are non-trivial elements in Sn(X), because we assumed that X 6= ∅:
we can always chose a point x0 ∈ X and consider the constant map κx0 : ∆n → X as a
singular n-simplex α. By convention, we define Sn(∅) = 0 for all n > 0.

3. By the universal property 1.2.5.3, to define group homomorphisms from Sn(X) to some
abelian group, it suffices to define such a map on generators.

Example 1.2.8.
Let X be any topological space. As an example, we compute S0(X): a continuous map α : ∆0 →
X is determined by its value α(e0) =: xα ∈ X, which is a point in X. A singular 0-simplex∑

i∈I λiαi can thus be identified with the formal sum of points
∑

i∈I λixαi with λi ∈ Z.
Such objects appear in complex analysis: counting the zeroes and poles of a meromorphic

function with multiplicities then this gives an element in S0(X). In algebraic geometry, a divisor
is an element in S0(X).

Definition 1.2.9
Using the face maps dn−1

i : ∆n−1 → ∆n from Example 1.2.3.3, we define a group homomorphism
∂i : Sn(X)→ Sn−1(X) on generators by precomposition with the face map

∂i(α) = α ◦ dn−1
i

and call it the ith face of the singular simplex α.

On Sn(X), we thus get by Z-linear extension ∂i(
∑

j λjαj) =
∑

j λj(αj ◦ d
n−1
i ).
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Lemma 1.2.10.
The face maps on Sn(X) satisfy the simplicial relations

∂j ◦ ∂i = ∂i−1 ◦ ∂j, 0 6 j < i 6 n.

Proof.
The relation follows immediately from the relation

dn−1
i ◦ dn−2

j = dn−1
j ◦ dn−2

i−1 , for all 0 6 j < i 6 n.

in Lemma 1.2.3. �

Definition 1.2.11
We define the boundary operator on singular chains as ∂ : Sn(X)→ Sn−1(X) as the alternating
sum ∂ =

∑n
i=0(−1)i∂i.

Lemma 1.2.12.
The map ∂ is a boundary operator, i.e. ∂ ◦ ∂ = 0.

Proof.
This is an immediate consequence of the simplicial relations in Lemma 1.2.10

∂ ◦ ∂ = (
n−1∑
j=0

(−1)j∂j) ◦ (
n∑
i=0

(−1)i∂i) =
∑
i

∑
j

(−1)i+j∂j ◦ ∂i

=
∑

06j<i6n

(−1)i+j∂j ◦ ∂i +
∑

06i6j6n−1

(−1)i+j∂j ◦ ∂i

1.2.10
=

∑
06j<i6n

(−1)i+j∂i−1 ◦ ∂j +
∑

06i6j6n−1

(−1)i+j∂j ◦ ∂i = 0.

�
We therefore obtain for a topological space X a complex of (free) abelian groups,

. . .→ Sn(X)
∂−→ Sn−1(X)

∂−→ . . .
∂−→ S1(X)

∂−→ S0(X)→ 0 ,

the singular chain complex, S∗(X). We abbreviate the group Zn(S∗(X)) of cycles by Zn(X),
the group Bn(S∗(X)) of boundaries by Bn(X) and the n-th homology group Hn(S∗(X)) by
Hn(X).

Definition 1.2.13
For a space X, the abelian group Hn(X) is called the nth singular homology group of X.

Example 1.2.14.

1. Note that all 0-chains are 0-cycles, Z0(X) = S0(X).

2. The boundary of a 1-chain α : ∆1 → X is

∂α = α ◦ d0 − α ◦ d1 = α(e1)− α(e0)

which justifies the name “boundary”.
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3. To find an example of a 1-cycle, consider a 1-chain c = α+ β + γ, where we take singular
1-simplices α, β, γ : ∆1 → X such that α(e1) = β(e0), β(e1) = γ(e0) and γ(e1) = α(e0).
Calculate ∂α = ∂0α− ∂1α = α(e1)− α(e0) and similarly for β and γ to find ∂c = 0. This
motivates the word “cycle”.

We need to understand how continuous maps of topological spaces interact with singular
chains and singular homology.

Definition 1.2.15
Let f : X → Y be a continuous map. The map fn = Sn(f) : Sn(X) → Sn(Y ) is defined on
generators α : ∆n → X by postcomposition

fn(α) = f ◦ α : ∆n α−→ X
f−→ Y.

Lemma 1.2.16.
For any continuous map f : X → Y we have commuting diagrams

Sn(X)
fn //

∂X

��

Sn(Y )

∂Y

��
Sn−1(X)

fn−1 // Sn−1(Y ),

i.e. (fn)n∈Z is a chain map and hence induces by the remarks following Definition 1.1.5, a map
Hn(f) : Hn(X)→ Hn(Y ) of the homology groups.

Proof.
By definition, we have for a singular n-simplex α : ∆n → X by the associativity of the compo-
sition of maps

∂Y (fn(α)) =
n∑
i=0

(−1)i(f ◦ α) ◦ di =
n∑
i=0

(−1)if ◦ (α ◦ di) = fn−1(∂Xα).

�

Remarks 1.2.17.

1. The identity map on X induces the identity map on Hn(X) for all n > 0 and if we have
a composition of continuous maps

X
f−→ Y

g−→ Z,

then Sn(g ◦ f) = Sn(g) ◦ Sn(f) and thus Hn(g ◦ f) = Hn(g) ◦Hn(f).

2. In categorical language, this says precisely that Sn(−) and Hn(−) are functors from
the category of topological spaces and continuous maps into the category of abelian
groups. Taking all Sn(−) together turns S∗(−) into a functor from topological spaces
and continuous maps into the category of chain complexes of abelian groups with chain
maps as morphisms.
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3. One implication of Lemma 1.2.16 is that homeomorphic spaces have isomorphic homology
groups:

X ∼= Y ⇒ Hn(X) ∼= Hn(Y ) for all n > 0.

In Theorem 1.4.7, we will see the stronger statement that homotopic maps induce the
same morphism in homology.

Our first (not too exciting) calculation is the following:

Proposition 1.2.18.
The homology groups of a one-point space pt are trivial but in degree zero,

Hn(pt) ∼=

{
0, if n > 0,

Z, if n = 0.

Proof.
For every n > 0 there is precisely one continuous map α : ∆n → pt, the constant map. We
denote this map by κn. Then the boundary of κn is

∂κn =
n∑
i=0

(−1)iκn ◦ di =
n∑
i=0

(−1)iκn−1 =

{
κn−1, n even,

0, n odd.

For all n we have Sn(pt) ∼= Z generated by κn and therefore the singular chain complex looks
as follows:

. . . ∂=0 //Z ∂=idZ //Z ∂=0 //Z → 0 ,

cf. Example 1.1.4.2. �

1.3 The homology groups H0 and H1

We start with the following observation:

Proposition 1.3.1.
For any topological space X, there is a homomorphism ε : H0(X)→ Z with ε 6= 0 for X 6= ∅.

Proof.

• If X 6= ∅, we have a unique morphism X → pt of topological spaces which induces by
Lemma 1.2.16 a morphism of chain complexes S∗(X) → S∗(pt). It maps any 0-simplex
α : ∆0 → X to

∆0 α→ X → pt ,

the generator of H0(pt), the constant map κ0 : ∆0 → pt, cf. Proposition 1.2.18.

• It is instructive to show directly that the map

ε̃ : S0(X)→ Z

with ε̃(α) = 1 for any generator α : ∆0 → X, thus ε̃(
∑

i∈I λiαi) =
∑

i∈I λi on S0(X) gives
a well-defined map on homology. (As only finitely many λi are non-trivial, this is in fact
a finite sum.)
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Let S0(X) 3 c = ∂b be a boundary and write b =
∑

i∈I νiβi with βi : ∆1 → X and a finite
set I. Then we get

∂b = ∂
∑
i∈I

νiβi =
∑
i∈I

νi(βi ◦ d0 − βi ◦ d1) =
∑
i∈I

νiβi ◦ d0 −
∑
i∈I

νiβi ◦ d1

and hence
ε̃(c) = ε̃(∂b) =

∑
i∈I

νi −
∑
i∈I

νi = 0.

�

We said that S0(∅) is zero, so H0(∅) = 0. In this case, we define ε to be the zero map.
If X 6= ∅, then any singular 0-simplex α : ∆0 → X can be identified with its image point,

so the map ε on S0(X) counts points in X with multiplicities.

Proposition 1.3.2.

If X is a path-connected, non-empty space, then ε : H0(X)
∼=→ Z.

Proof.

1. As X is non-empty, there is a point x ∈ X and the constant map κx with value x is an
element in S0(X) with ε(κx) = 1. Therefore, the group homomorphism ε is surjective.

2. For any other point y ∈ X there is a continuous path ω : [0, 1] → X with ω(0) = x and
ω(1) = y. We define a singular 1-simplex αω : ∆1 → X as

αω(t0, t1) = ω(1− t0)

for t0 + t1 = 1, 0 6 t0, t1 6 1. Then

∂(αω) = ∂0(αω)− ∂1(αω) = αω(e1)− αω(e0) = αω(0, 1)− αω(1, 0) = κy − κx,

and the two singular 0-simplices κx, κy in the path connected space X are homologous.
This shows that ε is injective.

�

Note that in the proof, we associated to a continuous path ω in X from x to y a 1-simplex
αω on X with ∂αω = κy − κx. In the sequel, we will identify them frequently.

Corollary 1.3.3.
If X is a disjoint union, X =

⊔
i∈I Xi, such that all Xi are non-empty and path-connected, then

H0(X) ∼=
⊕
i∈I

Z.

This gives an interpretation of the zeroth homology group of X: it is the free abelian group
generated by the path-components of X.

Proof.
The singular chain complex of X splits as the direct sum of chain complexes of the Xi:

Sn(X) ∼=
⊕
i∈I

Sn(Xi)

10



for all n. Boundary summands ∂i stay in a component, in particular,

∂ : S1(X) ∼=
⊕
i∈I

S1(Xi)→
⊕
i∈I

S0(Xi) ∼= S0(X)

is the direct sum of the boundary operators ∂ : S1(Xi) → S0(Xi) and the claim follows from
Proposition 1.3.2. �

Next, we relate the homology group H1 to the fundamental group π1. To this end, we see
continuous paths ω in X as 1-simplices αω, as in the proof of Proposition 1.3.2.

Lemma 1.3.4.
Let ω1, ω2, ω be paths in a topological space X.

1. Constant paths are null-homologous.

2. If ω1(1) = ω2(0), we can define the concatenation ω1 ∗ ω2 of ω1 followed by ω2. Then
αω1∗ω2 − αω1 − αω2 is a boundary.

3. If ω1(0) = ω2(0), ω1(1) = ω2(1) and if ω1 is homotopic to ω2 relative to {0, 1}, then αω1

and αω2 are homologous as singular 1-chains.

4. Any 1-chain of the form αω̄∗ω is a boundary. Here, ω̄(t) := ω(1− t).

Proof.

1. Denote by cx the constant path on x ∈ X. Consider the constant singular 2-simplex
α(t0, t1, t2) = x. Then ∂α = cx − cx + cx = cx.

2. We define a singular 2-simplex β : ∆2 → X on X as follows.

�
�
�
�
�
��

A
A
A
A
A
AK

-
ω1

ω2ω1 ∗ ω2 Q
QQ

Q
Q

Q
QQ

Q
QQ

e0 e1

e2

We define β on the boundary components of ∆2 as indicated and prolong it constantly
along the sloped inner lines. Then

∂β = β ◦ d0 − β ◦ d1 + β ◦ d2 = ω2 − ω1 ∗ ω2 + ω1.

3. Let H : [0, 1]× [0, 1]→ X a homotopy from ω1 to ω2. As we have that H(0, t) = ω1(0) =
ω2(0), we can factor H over the quotient [0, 1]× [0, 1]/{0}× [0, 1] ∼= ∆2 with induced map
h : ∆2 → X. Then

∂h = h ◦ d0 − h ◦ d1 + h ◦ d2.

The first summand is null-homologous by 1., because it is constant (with value ω1(1) =
ω2(1)), the second one is ω2 and the last is ω1, thus ω1 − ω2 is null-homologous.

11



4. Consider a singular 2-simplex γ : ∆2 → X as indicated below.

�
�
�
�
�
��

A
A
A
A
A
AK

-
ω̄

ωω(1)

�
�
�
��

�
�
�

��

e0 e1

e2

�

Definition 1.3.5
Let X be path-connected and x ∈ X. Let h : π1(X, x) → H1(X) be the map, that sends the
homotopy class [ω]π1 of a closed path ω to its homology class [ω] = [αω]H1 . This map is called
the Hurewicz-homomorphism. 1

Lemma 1.3.4.3 ensures that h is well-defined and by Lemma 1.3.4.2

h([ω1][ω2]) = h([ω1 ∗ ω2])
1.3.4.2

= [ω1] + [ω2] = h([ω1]) + h([ω2])

thus h is a group homomorphism. For a closed path ω we have by Lemma 1.3.4.4 that [ω̄] = −[ω]
in H1(X).

Recall that the commutator subgroup [G,G] of G is the smallest subgroup of a group G
containing all commutators [g, h] := ghg−1h−1 for all g, h ∈ G.

It is a normal subgroup of G: If c ∈ [G,G], then for any g ∈ G the element gcg−1c−1 is a
commutator and also by the closure property of subgroups the element gcg−1c−1c = gcg−1 is
in the commutator subgroup [G,G].

Definition 1.3.6
Let G be an arbitrary group, then its abelianization, Gab, is the quotient group G/[G,G].

Remark 1.3.7.
The abelianization comes with a projection G→ Gab. It can be characterized by the universal
property that any group homomorphism G→ A with A abelian factorizes uniquely as

G //

��

A

Gab

==

Proposition 1.3.8.
Let X be a path-connected non-empty space. Since H1(X) is abelian, the Hurewicz homomor-
phism factors over the abelianization of π1(X, x). It induces an isomorphism

π1(X, x)ab
∼= H1(X) ,

i.e.

π1(X, x) h //

p

��

H1(X)

π1(X, x)ab = π1(X, x)/[π1(X, x), π1(X, x)]

∼=
hab

33

1Witold Hurewicz: 1904–1956.
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Proof.

• We construct an inverse φ to hab. To this end, choose as an auxiliary datum for any point
y ∈ X a path uy from the base point x to y. For the base point x itself, we take ux to be
the constant path on x.

Let α be an arbitrary singular 1-simplex and let yi := α(ei). Define

φ̃ : S1(X) → π1(X, x)ab

on the generator α of S1(X) as the class of the closed path φ̃(α) = [uy0 ∗ ωα ∗ ūy1 ] and
extend φ linearly to all of S1(X), keeping in mind that the composition in π1 is written
multiplicatively.

• We have to show that φ̃ is trivial on boundaries, so let β : ∆2 → X a singular 2-simplex.
Then

φ̃(∂β) = φ̃(β ◦ d0 − β ◦ d1 + β ◦ d2) = φ̃(β ◦ d0)φ̃(β ◦ d1)−1φ̃(β ◦ d2).

Abbreviating β ◦ di with αi, we get as a result

[uy1 ∗α0 ∗ ūy2 ][uy0 ∗α1 ∗ ūy2 ]−1[uy0 ∗α2 ∗ ūy1 ] = [uy0 ∗α2 ∗ ūy1 ∗uy1 ∗α0 ∗ ūy2 ∗uy2 ∗ ᾱ1 ∗ ūy0 ].

Here, we have used that the image of φ̃ is abelian. We can reduce the paths ūy1 ∗ uy1 and
ūy2 ∗uy2 and are left with [uy0 ∗α2 ∗α0 ∗ ᾱ1 ∗ ūy0 ] but α2 ∗α0 ∗ ᾱ1 is the closed path tracing
the boundary of the singular 2-simplex β and therefore it is null-homotopic in X. Thus
φ̃(∂β) = 1 and φ̃ passes to a map

φ : H1(X)→ π1(X, x)ab .

• The composition φ ◦ hab evaluated on the class of a closed path ω gives

φ ◦ hab[ω]π1 = φ[ω]H1 = [ux ∗ ω ∗ ūx]π1 .

But we chose ux to be constant, thus φ ◦ hab = id.

If c =
∑
λiαi is a 1-cycle, then hab◦φ(c) is of the form [c+D∂c] where the D∂c-part comes

from the contributions of the uyi . The fact that ∂(c) = 0 implies that the summands in
D∂c cancel off and thus hab ◦ φ = idH1(X).

�

Note that abelianization of an abelian group is the group itself: G ∼= Gab. Whenever the
fundamental group is abelian, we thus have H1(X) ∼= π1(X, x).

Corollary 1.3.9.
Standard results on the fundamental group π1 yield explicit results for the following first ho-
mology groups:

H1(Sn) = 0, for n > 1, H1(S1) ∼= Z,

H1(S1 × . . .× S1︸ ︷︷ ︸
n

) ∼= Zn,

H1(S1 ∨ S1) ∼= (Z ∗ Z)ab
∼= Z⊕ Z,

H1(RP n) ∼=

{
Z, if n = 1,

Z/2Z, for n > 1.

13



1.4 Homotopy invariance

The main goal of this section is to show that two continuous maps that are homotopic induce
identical maps on homology groups.

Observation 1.4.1.

• Let α : ∆n → X a singular n-simplex; consider two homotopic maps f, g : X → Y . The
homotopy

H : X × [0, 1]→ Y

from f to g induces a homotopy

∆n × [0, 1]
α×id→ X × [0, 1]

H→ Y

from f ◦ α to g ◦ α. This is a map with codomain ∆n × [0, 1], i.e. from a prism over ∆n.
From this geometric homotopy, we want to obtain a chain homotopy from the chain map
S(f) to the chain map S(g) of singular chain complexes.

• To that end we have to cut the (n+1)-dimensional prism ∆n× [0, 1] into (n+1)-simplices.
In low dimensions this is intuitive:

– The one-dimensional prism ∆0 × [0, 1] is homeomorphic to the standard 1-simplex
∆1.

– The two-dimensional prism ∆1 × [0, 1] ∼= [0, 1]2 (which has the shape of a square)
can be cut in two triangles, i.e. into two copies of the standard 2-simplex ∆2.

– ∆2 × [0, 1] is a 3-dimensional prism and that can be glued together from three
tetrahedrons, e.g. like

@@

@@

��
���

��
��� @@��

���

�
�
�
��

�
�
�
�
�
�

@@

��
���

�
�
�
��

�
�
�
�
�
�
��

@@��
���

�
�
�
�
�
�
��

�
�
�
�
�
�

In general, we compose the (n + 1)-dimensional prism ∆n × [0, 1] from n + 1 copies of the
standard simplex ∆n+1:

Definition 1.4.2
For a given n ∈ N0, define n+ 1 injections

pi : ∆n+1 → ∆n × [0, 1]
(t0, . . . , tn+1) 7→ ((t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn+1), ti+1 + . . .+ tn+1)

with i = 0, . . . , n. These are (n+ 1)-simplices on the prism on the topological space ∆n× [0, 1].
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Remark 1.4.3.

• The image of the standard basis vectors ek with k = 0, 1, . . . n+ 1 is

pi(ek) =

{
(ek, 0), for 0 6 k 6 i,

(ek−1, 1), for k > i.

For example, in the case n = 1, we have

p0 e0 7→ e0 p1 e0 7→ e0

e1 7→ e0 + e2 e1 7→ e1

e2 7→ e1 + e2 e2 7→ e1 + e2

• For all n > 0, we obtain n+ 1 group homomorphisms

Pi : Sn(X)→ Sn+1(X × [0, 1])

for i = 0, 1, . . . n which is defined on a generator α : ∆n → X of Sn(X) via precomposition:

Pi(α) = (α× id) ◦ pi : ∆n+1 pi−→ ∆n × [0, 1]
α×id−→ X × [0, 1].

• For k = 0, 1 let jk : X → X × [0, 1] be the inclusion x 7→ (x, k).

Lemma 1.4.4.
The group homomorphisms Pi satisfy the following relations:

1. ∂0 ◦ P0 = Sn(j1) as group homomorphisms Sn(X)→ Sn(X × [0, 1]).

2. ∂n+1 ◦ Pn = Sn(j0),

3. ∂i ◦ Pi = ∂i ◦ Pi−1 for 1 6 i 6 n.

4.

∂j ◦ Pi =

{
Pi ◦ ∂j−1, for i 6 j − 2

Pi−1 ◦ ∂j, for i > j + 1.

Proof.

• For the first point, note that for α : ∆n → X, ∂0 ◦ P0(α) is the singular n-simplex

∆n d0→ ∆n+1 p0→ ∆n × [0, 1]
α×id→ X × [0, 1] .

The composition of the first two maps on ∆n evaluates to

p0 ◦ d0(t0, . . . , tn) = p0(0, t0, . . . , tn) = ((t0, . . . , tn),
n∑
i=0

ti) = ((t0, . . . , tn), 1)

and thus the whole map equals

Sn(j1)(α) : ∆n α→ X
j1→ X × [0, 1]

• Similarly, we compute

pn ◦ dn+1(t0, . . . , tn) = pn(t0, . . . , tn, 0) = ((t0, . . . , tn), 0)

and deduce ∂n+1 ◦ Pn = Sn(j0).
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• For the third identity, one checks that pi ◦ di = pi−1 ◦ di on ∆n: both give
((t0, . . . , tn),

∑n
j=i tj) on (t0, . . . , tn).

• For d) in the case i > j + 1, consider the following diagram

∆n+1 pi // ∆n × [0, 1]

∆n

dj

88

pi−1

&&
∆n−1 × [0, 1]

dj×id // ∆n × [0, 1]

Checking coordinates one sees that this diagram commutes: both give
((t0, . . . , tj−1, 0, . . . ti−1 + ti, . . . tn),

∑n
j=i tj) on (t0, . . . , tn).

The remaining case follows from a similar observation.

�

Definition 1.4.5
For each n > 0, we define a group homomorphism

P : Sn(X)→ Sn+1(X × [0, 1])

as the alternating sum P =
∑n

i=0(−1)iPi.

Lemma 1.4.6.
The group homomorphisms P provide a chain homotopy between the chain maps S(j0), S(j1) :
S∗(X)→ S∗(X × [0, 1]), i.e. we have for all n

∂ ◦ P + P ◦ ∂ = Sn(j1)− Sn(j0) .

Proof.
We evaluate the left hand side on a singular n simplex α : ∆n → X and find from the definitions

∂Pα + P∂α =
n∑
i=0

n+1∑
j=0

(−1)i+j∂jPiα +
n−1∑
i=0

n∑
j=0

(−1)i+jPi∂jα.

If we single out the terms involving the pairs of indices (0, 0) and (n, n + 1) in the first sum,
we are left with by Lemma 1.4.4.1 and 2.

Sn(j1)(α)− Sn(j0)(α) +
∑

(i,j)6=(0,0),(n,n+1)

(−1)i+j∂jPiα +
n−1∑
i=0

n∑
j=0

(−1)i+jPi∂jα.

Using Lemma 1.4.4 we see that only the first two summands survive: the terms in the first
sum with i = j and i = j − 1 cancel by Lemma 1.4.4.3. The remaining terms cancel by the
same mechanism as in the proof of Lemma 1.2.12. �

So, finally we can prove the main result of this section:
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Theorem 1.4.7 (Homotopy invariance).
If f, g : X → Y are homotopic maps, then they induce the same map on homology.

Proof.
Let H : X × [0, 1]→ Y be a homotopy from f to g, i.e. H ◦ j0 = f and H ◦ j1 = g. Set

Kn := Sn+1(H) ◦ P : Sn(X)
P→ Sn+1(X × [0, 1])

Sn+1(H)−→ Sn+1(Y ) .

We claim that (Kn)n is a chain homotopy between the two chain maps (Sn(f))n and (Sn(g))n.
Note that H : X × I → Y induces a chain map (Sn(H))n. Therefore we get

∂ ◦ Sn+1(H) ◦ P︸ ︷︷ ︸
Kn

+Sn(H) ◦ P︸ ︷︷ ︸
Kn−1

◦∂ = Sn(H) ◦ ∂ ◦ P + Sn(H) ◦ P ◦ ∂ [S•(H) is a chain map]

= Sn(H) ◦ (∂ ◦ P + P ◦ ∂)
1.4.6
= Sn(H) ◦ (Sn(j1)− Sn(j0))

= Sn(H ◦ j1)− Sn(H ◦ j0)

= Sn(g)− Sn(f).

Hence the two chain maps S(f) and S(g) are chain homotopic; by Proposition 1.1.9.2, we have
Hn(g) = Hn(f) for all n. �

Corollary 1.4.8.

1. If two spaces X, Y are homotopy equivalent, then H∗(X) ∼= H∗(Y ).

2. In particular, if X is contractible, then

H∗(X) ∼=

{
Z, for ∗ = 0

0, otherwise.

Examples 1.4.9.

1. Since Rn is contractible for all n, the above corollary implies that its homology is trivial
but in degree zero where it consists of the integers.

2. As the Möbius strip is homotopy equivalent to S1, we know that their homology groups
are isomorphic.

3. The zero section of a vector bundle induces a homotopy equivalence between the base
and the total space, hence these two have isomorphic homology groups.

1.5 The long exact sequence in homology

In a typical situation, we have a subspace A of a topological space X and might know some-
thing about A or X and want to calculate the homology of the other space using that partial
information.

Before we can move on to topological applications, we need some algebraic techniques for
chain complexes. We need to know that a short exact sequence of chain complexes gives rise to
a long exact sequence in homology.

Definition 1.5.1
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1. Let A,B,C be abelian groups and

A
f //B

g //C

a sequence of homomorphisms. Then this sequence is exact, if the image of f equals the
kernel of g.

2. A sequence

. . .
fi+1 //Ai

fi //Ai+1
fi−1 // . . .

of homomorphisms of abelian groups (indexed over the integers) is called (long) exact, if
it is exact at every Ai, i.e. the image of fi+1 equals the kernel of fi for all i.

3. An exact sequence of the form

0 //A
f //B

g //C //0

is called a short exact sequence.

Examples 1.5.2.

1. The sequence

0 //Z 2· //Z π //Z/2Z //0

is a short exact sequence.

2. The sequence

0 //U ι //A

is exact, iff ι : U → A is a monomorphism. The sequence

B
% //Q //0

is exact, iff % : B → Q is an epimorphism. Finally, Φ : A→ A′ is an isomorphism, iff the

sequence 0 //A
φ //A′ //0 is exact.

3. A sequence

0 //A
f //B

g //C //0

is exact, iff f is injective, the image of f equals the kernel of g and g is an epimorphism.

4. Another equivalent description is to view a long exact sequence as a chain complex with
vanishing homology groups. Homology measures the deviation from exactness.

Definition 1.5.3
If A∗, B∗, C∗ are chain complexes and f∗ : A∗ → B∗, g∗ : B∗ → C∗ are chain maps, then we call
the sequence of chain complexes

A∗
f∗ //B∗

g∗ //C∗

exact, if the image of fn is the kernel of gn for all n ∈ Z.
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Thus such an exact sequence of chain complexes is a commuting double ladder

...

d

��

...

d

��

...

d

��
An+1

fn+1 //

d
��

Bn+1
gn+1 //

d
��

Cn+1

d
��

An
fn //

d
��

Bn
gn //

d
��

Cn

d
��

An−1
fn−1 //

d��

Bn−1
gn−1 //

d��

Cn+1

d��
...

...
...

in which every row is exact and where in the columns we have differentials, i.e. d ◦ d = 0.

Example 1.5.4.
Let p be a prime, then the diagram

0

��

0

��

0

��
Z id //

·p
��

Z 0 //

·p2
��

0

��
Z ·p //

π

��

Z π //

π
��

Z/pZ

id
��

Z/pZ ·p //

��

Z/p2Z π //

��

Z/pZ

��
0 0 0

has exact rows and columns. It is an exact sequence of chain complexes. Here, π denotes the
appropriate canonical projection map.

Proposition 1.5.5.

If 0 //A∗
f //B∗

g //C∗ //0 is a short exact sequence of chain complexes, then there exists
a homomorphism δn : Hn(C∗)→ Hn−1(A∗) for all n ∈ Z which is natural, i.e. if

0 // A∗
f //

α
��

B∗
g //

β
��

C∗ //

γ

��

0

0 // A′∗
f ′ // B′∗

g′ // C ′∗ // 0

is a commutative diagram of chain complexes in which the rows are exact, then Hn−1(α) ◦ δn =
δ′n ◦Hn(γ),

Hn(C∗)
δn //

Hn(γ)

��

Hn−1(A∗)

Hn−1(α)

��
Hn(C ′∗)

δ′n // Hn−1(A′∗)
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The method of proof is an instance of a diagram chase. The homomorphism δn is called
connecting homomorphism.

Proof.
We show the existence of a δ first and then prove that the constructed map satisfies the
naturality condition.

a) Definition of δ:

We work with the following maps:

Bn 3 b �
gn //

d
��

c ∈ Cn

An−1 3 a � fn−1 // db ∈ Bn−1
�gn−1 // 0

For c ∈ Cn with d(c) = 0, we choose a preimage b ∈ Bn with gnb = c. This is possible
because gn is surjective. We know that dgnb = dc = 0 = gn−1db thus db is in the kernel
of gn−1, hence it is in the image of fn−1. Thus there is an a ∈ An−1 with fn−1a = db. We
have that fn−2da = dfn−1a = ddb = 0 and as fn−2 is injective, this shows that a is a cycle.
We define δ[c] := [a].

In order to check that δ is well-defined, we assume that there are two different preimages
b and b′ with gnb = gnb

′ = c. Then gn(b − b′) = 0 and thus there is an ã ∈ An with
fnã = b− b′. Define a′ := a− dã ∈ An−1. Then

fn−1a
′ = fn−1a− fn−1dã = db− db+ db′ = db′

because fn−1dã = dfnã = db − db′. As fn−1 is injective, we get that a′ is uniquely deter-
mined with this property. As a is homologous to a′ we get that [a] = [a′] = δ[c], thus the
latter is independent of the choice of the preimage b.

In addition, we have to make sure that the value stays the same if we add a boundary
term to c, i.e. take c′ = c + dc̃ for some c̃ ∈ Cn+1. Choose preimages of c, c̃ under the
surjective maps gn and gn+1, i.e., b and b̃ with gnb = c and gn+1b̃ = c̃. Then the element
b′ = b+ db̃ has boundary db′ = db and thus both choices will result in the same a.

Therefore the connecting morphism δn : Hn(C∗)→ Hn−1(A∗) is well-defined.

b) We have to show that δ is natural with respect to maps of short exact sequences.

Let c ∈ Zn(C∗), then δ[c] = [a] for some b ∈ Bn with gnb = c and a ∈ An−1 with
fn−1a = db. Therefore, Hn−1(α)(δ[c]) = [αn−1(a)].

On the other hand, we have

f ′n−1(αn−1a) = βn−1(fn−1a) = βn−1(db) = dβnb

and
g′n(βnb) = γngnb = γnc

and we can conclude that by the construction of the connecting homomorphism δ′ in the
second long exact sequence

δ′[γn(c)] = [αn−1(a)]

and this shows δ′ ◦Hn(γ) = Hn−1(α) ◦ δ.
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With this auxiliary result at hand we can now prove the main result in this section:

Proposition 1.5.6 (Long exact sequence in homology).
For any short exact sequence

0 //A∗
f //B∗

g //C∗ //0

of chain complexes we obtain a long exact sequence of homology groups

. . . δ //Hn(A∗)
Hn(f) //Hn(B∗)

Hn(g) //Hn(C∗)
δ //Hn−1(A∗)

Hn−1(f)// . . .

Proof.

a) Exactness at Hn(B∗):
We have Hn(g)◦Hn(f)[a] = [gn(fn(a))] = 0, because the composition of gn and fn is zero.
This proves that the image of Hn(f) is contained in the kernel of Hn(g).

For the converse, let [b] ∈ Hn(B∗) with [gnb] = 0. Since gnb is a boundary, there exists
c ∈ Cn+1 with dc = gnb. As gn+1 is surjective, we find a b′ ∈ Bn+1 with gn+1b

′ = c. Hence

gn(b− db′) = gnb− dgn+1b
′ = dc− dc = 0.

Exactness at Bn allows to find a ∈ An with fna = b− db′. Now

fn−1(da) = dfn(a) = d(b− db′) = db = 0

since b is a cycle. The map fn−1 is injective, thus da = 0. Therefore fna is homologous to
b and Hn(f)[a] = [b]. Thus the kernel of Hn(g) is contained in the image of Hn(f).

b) Exactness at Hn(C∗):

Let [b] ∈ Hn(B∗), then δ[gnb] = 0 because b is a cycle, so 0 is the only preimage under
the injective map fn−1 of db = 0. Therefore the image of Hn(g) is contained in the kernel
of the connecting morphism δ.

Now assume that δ[c] = 0, thus in the construction of δ, the a is a boundary, a = da′.
Then for a preimage b of c under gn, we have by the definition of a

d(b− fna′) = db− dfna′ = db− fn−1a = 0.

Thus b− fna′ is a cycle and gn(b− fna′) = gnb− gnfna′ = gnb− 0 = gnb = c, so we found
a preimage for [c] under Hn(g) and the kernel of δ is contained in the image of Hn(g).

c) Exactness at Hn−1(A∗):

Let c be a cycle in Zn(C∗). Again, we choose a preimage b of c under gn and an a with
fn−1(a) = db. Then Hn−1(f)δ[c] = [fn−1(a)] = [db] = 0. Thus the image of δ is contained
in the kernel of Hn−1(f).

If a ∈ Zn−1(A∗) with Hn−1(f)[a] = 0. Then fn−1a = db for some b ∈ Bn. Take c = gnb.
Then by definition δ[c] = [a].

�
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1.6 The long exact sequence of a pair of spaces

Let X be a topological space and A ⊂ X a subspace of X.

Remarks 1.6.1.
1. Consider the inclusion map i : A → X, i(a) = a. We obtain an induced map of chain

complexes Sn(i) : Sn(A) → Sn(X). The inclusion of spaces does not have to yield a
monomorphism on homology groups. For instance, we can include A = S1 into X = D2.
By Corollary 1.4.8.2, since D is contractible, we know that Hn(D) = 0 for n > 1 and by
Corollary 1.3.9 that H1(S1) = Z.

2. Consider the quotient groups Sn(X,A) := Sn(X)/Sn(A). Since dn(Sn(A)) ⊂ Sn−1(A), the
differential induces a well-defined map

dn Sn(X)/Sn(A) → Sn−1(X)/Sn−1(A)
cn + Sn(A) 7→ dn(cn) + Sn−1(A)

that squares to zero.

3. Alternatively, Sn(X,A) is isomorphic to the free abelian group generated by all n-simplices
β : ∆n → X whose image is not completely contained in A, i.e. β(∆n) ∩ (X \ A) 6= ∅.

We consider pairs of spaces (X,A).

Definition 1.6.2
The relative chain complex of the pair (X,A) is

S∗(X,A) := S∗(X)/S∗(A)

with the differentials described in Remark 1.6.1.2.

Definition 1.6.3
• Elements in Sn(X,A) are called relative chains in (X,A).

• Cycles in Sn(X,A) are chains c with ∂X(c) a linear combination of generators with image
in A. These are called relative cycles.

• Boundaries in Sn(X,A) are chains c in X such that c = ∂Xb+ a where a is a chain in A.
These are called relative boundaries.

The following facts are immediate from the definition:

1. Sn(X,∅) ∼= Sn(X).

2. Sn(X,X) = 0.

3. Sn(X tX ′, X ′) ∼= Sn(X).

Definition 1.6.4
The relative homology groups of the pair of spaces (X,A) are the homology groups of the
relative chain complex S∗(X,A) from Definition 1.6.2:

Hn(X,A) := Hn(S∗(X,A)).
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Theorem 1.6.5 (Long exact sequence for relative homology).

1. For any pair of topological spaces A ⊂ X we obtain a long exact sequence

. . . δ //Hn(A)
Hn(i) //Hn(X) //Hn(X,A) δ //Hn−1(A)

Hn−1(i)// . . .

2. For a map of spaces f : X → Y with f(A) ⊂ B ⊂ Y , we get an induced map of long
exact sequences

. . .
δ // Hn(A)

Hn(f |A)

��

Hn(i) // Hn(X)

Hn(f)

��

// Hn(X,A)

Hn(f)

��

δ // Hn−1(A)

Hn−1(f |A)

��

Hn−1(i)// . . .

. . .
δ
// Hn(B)

Hn(i)
// Hn(Y ) // Hn(Y,B)

δ
// Hn−1(B)

Hn−1(i)
// . . .

A map f : X → Y with f(A) ⊂ B is denoted by f : (X,A)→ (Y,B).

Proof.

1. By definition of the relative chain complex S∗(X,A) the sequence

0 //S∗(A)
S∗(i) //S∗(X) π //S∗(X,A) //0

is an exact sequence of chain complexes and by Proposition 1.5.6 we obtain the long exact
sequence in the first claim.

2. For a map f : (X,A)→ (Y,B) the diagram

0 // Sn(A)

Sn(f |A)

��

Sn(i) // Sn(X)

Sn(f)

��

π // Sn(X,A)

Sn(f)/Sn(f |A)

��

// 0

0 // Sn(B)
Sn(i) // Sn(Y ) π // Sn(Y,B) // 0

commutes. We now use Proposition 1.5.5.

�

Example 1.6.6.
Consider the embedding

ι : Sn−1 ↪→ Dn .

We obtain a long exact sequence

. . .→ Hj(Sn−1)→ Hj(Dn)→ Hj(Dn,Sn−1)
δ→ Hj−1(Sn−1)→ Hj−1(Dn)→ . . .

The disc Dn is contractible and by Corollary 1.4.8, we have Hj(Dn) = 0 for j > 0. From the
long exact sequence we get that δ : Hj(Dn,Sn−1) ∼= Hj−1(Sn−1) for j > 1 and n > 1.

Recall the following definitions:

Definition 1.6.7

1. A subspace ι : A ↪→ X is a weak retract, if there is a map r : X → A with r ◦ ι ' idA.
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2. A subspace ι : A ↪→ X is a deformation retract, if there is a homotopy R : X × [0, 1]→ X
such that

(a) R(x, 0) = x for all x ∈ X,

(b) R(x, 1) ∈ A for all x ∈ X, and

(c) R(a, 1) = a for all a ∈ A.

Any deformation retract is a weak retract: take r := R(−, 1) : X → A. Condition (c) then
amounts to r ◦ ι = idA.

Proposition 1.6.8.
If i : A ↪→ X is a weak retract, then

Hn(X) ∼= Hn(A)⊕Hn(X,A), 0 6 n.

Proof.
From the defining identity of a weak retract r ◦ ι ' idA, we get by Theorem 1.4.7 that Hn(r) ◦
Hn(i) = Hn(idA) = idHn(A) for all n. Hence Hn(i) is injective for all n. This implies that

0→ Hn(A)
Hn(i)−→ Hn(X) is exact. Injectivity of Hn−1(i) yields that the image of δ : Hn(X,A)→

Hn−1(A) is trivial. Therefore, the long exact sequence of Theorem 1.6.4 decomposes into short
exact sequences

0→ Hn(A)
Hn(i)−→ Hn(X)

π∗−→ Hn(X,A)→ 0

for all n. As Hn(r) is a left-inverse for Hn(i) we obtain a splitting

Hn(X) ∼= Hn(A)⊕Hn(X,A) .

Indeed, we have a map
Hn(X) → Hn(A)⊕Hn(X,A)

[c] 7→ ([rc], π∗[c])

with inverse
Hn(A)⊕Hn(X,A) → Hn(X)

([a], [b]) 7→ Hn(i)[a] + [a′]−Hn(i ◦ r)[a′]

for any [a′] ∈ Hn(X) with π∗[a
′] = [b]. The second map is well-defined: if [a′′] is an-

other element with π∗[a
′′] = [b], then [a′ − a′′] is of the form Hn(i)[ã] because this element

is in the kernel of π∗ and hence [a′−a′′]−Hn(i◦r)[a′−a′′] = Hn(i)[ã]−Hn(i◦r◦i)[ã] is trivial. �

Proposition 1.6.9.
For any ∅ 6= A ⊂ X such that A ⊂ X is a deformation retract, then

Hn(i) : Hn(A) ∼= Hn(X), Hn(X,A) ∼= 0, 0 6 n.

Proof.
Consider the map r := R(−, 1) : X → A. Then R is a homotopy from idX to i ◦ r. The third
condition defining a deformation retract can be rewritten as r ◦ i = idA, i.e. r is a retraction.
Together, this implies that A and X are homotopically equivalent and by Corollary 1.4.8 Hn(i)
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is an isomorphism for all n > 0. �

Definition 1.6.10
If X has two subspaces A,B ⊂ X, then (X,A,B) is called a triple, if B ⊂ A ⊂ X.

Any triple gives rise to three pairs of spaces (X,A), (X,B) and (A,B) and accordingly we
have three long exact sequences in homology. But there is another long exact sequence:

Proposition 1.6.11.
For any triple (X,A,B), there is a natural long exact sequence

. . . //Hn(A,B) //Hn(X,B) //Hn(X,A) δ //Hn−1(A,B) // . . .

This sequence is part of the following braided commutative diagram displaying four long exact
sequences

. . .

&&

. . .

Hn+1(X,A)
��

&&

Hn(A,B)
  

&&

Hn−1(B)

$$

99

. . .

99

%%

Hn(A)

99

&&

Hn(X,B)

88

''

. . .

Hn(B)
??

88

Hn(X)
>>

88

Hn(X,A)

::

%%. . .

88

. . .

In particular, the connecting homomorphism δ : Hn(X,A) → Hn−1(A,B) is the composite

δ = π
(A,B)
∗ ◦ δ(X,A).

Proof.
Note that Sn(B) ⊂ Sn(A) ⊂ Sn(X); by the homomorphism theorem, the sequence

0 //Sn(A)/Sn(B) //Sn(X)/Sn(B) //Sn(X)/Sn(A) //0.

is exact. Now apply Proposition 1.5.6 to obtain the long exact sequence. �

1.7 Excision

The aim is to simplify relative homology groups. Let A ⊂ X be a subspace. Then it is easy to
see that H∗(X,A) is not isomorphic to H∗(X \A): Consider the figure eight as X and A as the
point connecting the two copies of S1.

&%
'$
&%
'$
•
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• X \ A has two connected components. By Corollary 1.3.3 we have H0(X \ A) ∼= Z⊕ Z.

• Any x ∈ X\A is a generator for the group of 0-cycles. Since the space X is path connected,
it is homologous to the point a ∈ A and thus vanishes in relative homology. The group
H0(X,A) is trivial.

So if we want to simplify the relative homology group H∗(X,A) by excising something, then
we have to be more careful. The first step towards that is to make singular simplices ’smaller’.
The technique is called barycentric subdivision; it is a tool that is frequently used.

First, we construct cones. Let v ∈ ∆p and let α : ∆n → ∆p be a singular n-simplex on ∆p.

Definition 1.7.1
The cone of α : ∆n → ∆p with respect to v ∈ ∆p is the singular (n+1)-simplex Kv(α) : ∆n+1 →
∆p,

(t0, . . . , tn+1) 7→

{
(1− tn+1)α( t0

1−tn+1
, . . . , tn

1−tn+1
) + tn+1v, tn+1 < 1,

v, tn+1 = 1.

This map is well-defined and continuous. On the standard basis vectors Kv gives Kv(ei) = α(ei)

for 0 6 i 6 n but Kv(en+1) = v. Extending Kv linearly gives a map on chain groups

Kv : Sn(∆p)→ Sn+1(∆p).

Lemma 1.7.2.
The map Kv satisfies:

1. For c ∈ S0(∆p), the boundary of the cone Kv(c) is the 0-chain

∂Kv(c) = ε(c).κv − c

with κv(e0) = v and ε the augmentation as introduced in Proposition 1.3.1.

2. For n > 0 we have that ∂ ◦Kv −Kv ◦ ∂ = (−1)n+1id.

Proof.

1. For a singular 0-simplex α : ∆0 → ∆p we know that ε(α) = 1 and we calculate

∂Kv(α)(e0) = Kv(α) ◦ d0(e0)−Kv(α) ◦ d1(e0) = Kv(α)(e1)−Kv(α)(e0) = v − α(e0).

Extending linearly shows the claim.

2. For n > 0 we have to calculate ∂iKv(α) and it is straightforward to see that ∂n+1Kv(α) = α
and ∂i(Kv(α)) = Kv(∂iα) for all 0 6 i < n+ 1.

�

Definition 1.7.3
For an n-simple α : ∆n → ∆p on ∆p, choose as the additional vertex the barycenter v(α) =
v := 1

n+1

∑n
i=0 α(ei) of the vertices. The barycentric subdivision B : Sn(∆p)→ Sn(∆p) is defined

inductively as B(α) = α for α ∈ S0(∆p) and B(α) = (−1)nKv(B(∂α)) for n > 0. For n > 1

this equals B(α) =
∑n

i=0(−1)n+iKv(B(∂iα)).
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If we take n = p and α = id∆n , then for small n this looks as follows: You cannot subdivide
a point any further. For n = 1 we get
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•

And for n = 2 we get (up to tilting)
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Lemma 1.7.4.
The barycentric subdivision is a chain map

B : S∗(∆
p)→ S∗(∆

p) .

Proof.
We have to show that ∂B = B∂.

• If α is a singular zero chain, then the fact Bα = α from the definition implies ∂Bα =
∂α = 0 and B∂α = B(0) = 0.

• Let n = 1. Then by Definition 1.7.3

∂Bα = −∂KvB(∂0α) + ∂KvB(∂1α).

But the boundary terms are zero chains on which B is the identity, so we get with Lemma
1.7.2.1

−∂Kv(∂0α) + ∂Kv(∂1α)
1.7.2.1

= −κv + ∂0α + κv − ∂1α = ∂α = B∂α.

In the last step, we used that B is the identity on the 0-chain ∂α. Note, that the v is
v(α), not a v(∂iα).

• We prove the claim inductively, so let α ∈ Sn(∆p). Then

∂Bα
def
=(−1)n∂Kv(B∂α)

1.7.2.2
= (−1)n((−1)nB∂α +Kv∂B∂α)

ind.
=B∂α + (−1)nKvB∂∂α = B∂α.

Here, the first equality is by definition, the second one follows by Lemma 1.7.2.2 and then
we use the induction hypothesis and the fact that ∂∂ = 0.

�
Our aim is to show that barycentric subdivision B does not change anything on the level of
homology groups and to that end we prove that the chain map B : S∗(∆

p)→ S∗(∆
p) is chain

homotopic to the identity.
To this end, we construct ψn : Sn(∆p)→ Sn+1(∆p) again inductively on generators as

ψ0(α) := 0, ψn(α) := (−1)n+1Kv(Bα− α− ψn−1∂α)

with v := 1
n+1

∑n
i=0 α(ei) the barycenter.
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Lemma 1.7.5.
The sequence (ψn)n is a chain homotopy from B to the identity on S∗(∆

p).

Proof.

• For n = 0 we have ∂ψ0 = 0 and this agrees with B − id in that degree.

• For n = 1, we get

∂ψ1 + ψ0∂ = ∂ψ1
def
= ∂(KvB −Kv −Kvψ0∂) = ∂KvB − ∂Kv.

With Lemma 1.7.2.2 we can transform the latter to B + Kv∂B − ∂Kv and as B is a
chain map, this equals B+KvB∂− ∂Kv. In chain degree one B∂ agrees with ∂, thus this
reduces to

B +Kv∂ − ∂Kv = B − (∂Kv −Kv∂)
1.7.2.2

= B − id.

• So, finally we can do the inductive step:

∂ψn =(−1)n+1∂Kv(B − id− ψn−1∂) [defn.]

=(−1)n+1∂KvB − (−1)n+1∂Kv − (−1)n+1∂Kvψn−1∂

=(−1)n+1((−1)n+1B +Kv∂B) [Lemma 1.7.2.2]

− (−1)n+1((−1)n+1id +Kv∂) [Lemma 1.7.2.2]

− (−1)n+1((−1)n+1ψn−1∂ +Kv∂ψn−1∂) [1.7.2.2]

=B − id− ψn−1∂ + remaining terms

The equation

Kv∂ψn−1∂ +Kvψn−2∂
2 = Kv (∂ψn−1 + ψn−2∂) ∂

ind. ass.
= KvB∂ −Kv∂

from the inductive assumption ensures that these terms give zero.

�

Definition 1.7.6
A singular n-simplex α : ∆n → ∆p is called affine, if

α(
n∑
i=0

tiei) =
n∑
i=0

tiα(ei).

We abbreviate vi := α(ei), so α(
∑n

i=0 tiei) =
∑n

i=0 tivi and we call the elements vi ∈ ∆p the

vertices of α.

Definition 1.7.7
Let A be a subset of a metric space (X, d). The diameter of A is

sup{d(x, y)|x, y ∈ A}

and we denote it by diam(A).
Accordingly, the diameter of an affine n-simplex α in ∆p is the diameter of its image, and

we abbreviate that with diam(α).
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Lemma 1.7.8.
For any affine singular n-simplex α every simplex in the chain Bα has diameter 6 n

n+1
diam(α).

Thus barycentric subdivision of affine simplices decreases the diameter. Either you believe
this lemma, or you prove it, or you check Bredon, Proof of Lemma 13.7 (p. 226).

Each simplex in the chain Bα is again affine; this allows us to iterate the application of B
and get smaller and smaller diameter of individual simplices. Thus, the k-fold iteration, Bk(α),

has diameter at most
(

n
n+1

)k
diam(α).

In the following we use the easy, but powerful trick to express the singular n-simplex α :
∆n → X as

α = α ◦ id∆n = Sn(α)(id∆n) ,

i.e. as the image of an n-simplex on ∆n. This allows us to use the barycentric subdivision for
general spaces: note that id∆n : ∆n → ∆n can be seen as an n-simplex on ∆n. To this simplex, we
can apply barycentric subdivision to get a chain B(id∆n) ∈ Sn(∆n). Now a singular n-simplex
on X is a map α : ∆n → X and thus gives rise to a morphism of abelian groups

Sn(α) : Sn(∆n)→ Sn(X) .

Therefore, Sn(α)B(∆n) ∈ Sn(X).

Definition 1.7.9

1. We define BX
n : Sn(X)→ Sn(X) as

BX
n (α) := Sn(α) ◦B(id∆n).

2. Similarly, ψXn : Sn(X)→ Sn+1(X) is defined as

ψXn (α) := Sn+1(α) ◦ ψn(id∆n).

Lemma 1.7.10.

1. The maps BX are natural in X , i.e. for any map X
f→ Y of topological spaces the

diagram

S∗(X)

S∗(f)
��

BX // S∗(X)

S∗(f)
��

S∗(Y ) BY // S∗(Y )

commutes.

2. The maps
BX : S∗(X)→ S∗(X)

are homotopic to the identity on Sn(X).

Proof.
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• Let f : X → Y be a continuous map. We have

Sn(f)BX
n (α) =Sn(f) ◦ Sn(α) ◦B(id∆n)

=Sn(f ◦ α) ◦B(id∆n)

=BY
n (f ◦ α) = BY

n Sn(f)(α).

In the first step, we used the definition of BX
n ; in the second step the functorality of

Sn(−). In the last step, we used the definition of Sn(f). Thus the maps BX are natural
in X.

• The calculation for ∂ψXn + ψXn−1∂ = BX
n − idSn(X) uses that α induces a chain map and

thus we get

∂ψXn (α)
defn
= ∂ ◦ Sn+1(α) ◦ ψn(id∆n)

S chain map
= Sn(α) ◦ ∂ ◦ ψn(id∆n).

Hence

(∂ψXn + ψXn−1∂)(α) = Sn(α) ◦ (∂ ◦ ψn(id∆n) + ψn−1 ◦ ∂(id∆n))

[1.7.5]
= Sn(α) ◦ (B − id)(id∆n) = BX

n (α)− α.

�

Now we consider singular n-chains that are spanned by ’small’ singular n-simplices. Here,
“smallness’ is defined in terms of an open covering.

Definition 1.7.11
Let U = {Ui, i ∈ I} be an open covering of X. Then SU

n(X) is the free abelian group generated
by all singular n-simplices α : ∆n → X such that the image of ∆n under α is contained in one
of the open sets Ui ∈ U.

Note that SU
n(X) is an abelian subgroup of the singular chain group Sn(X). The restriction

of the differential of Sn(X) gives a chain complex

. . .→ SU
n(X)→ SU

n−1(X)→ . . . .

We denote its homology by HU
n (X). As we will see now, these chains suffice to detect everything

in singular homology.

Lemma 1.7.12.

1. For any subspace A ⊂ X, the barycentric subdivision of c ∈ Sn(A) is again in Sn(A), i.e.
Bk(c) ∈ Sn(A).

2. If c ∈ Sn(X) is a cycle relative A ⊂ X, then B(c) is a cycle relative A as well that is
homologous to c relative A.

3. Let U be an open covering of X. Then every cycle in Sn(X) is homologous to a cycle in
SU
n(X).

Proof.

1. This follows at once from the definition of barycentric subdivision.
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2. We note that the map ψn : Sn(X) → Sn+1(X) maps α ∈ Sn(A) to ψn(α) ∈ Sn+1(A).
Now consider for a relative cycle c the equation. cf. 1.7.10.2

Bc = c+ ψn−1∂c+ ∂ψnc .

Since c is a relative cycle, ∂c ∈ Sn−1(A) and by part 1, ψn−1∂c ∈ Sn(A). Thus Bc is
homologous to c relative A. Its boundary is

∂Bc = ∂c+ ∂ψn−1∂c .

Thus Bc is a relative cycle as well.

3. Consider a singular n-chain α =
∑m

j=1 λjαj ∈ Sn(X) on X and let Lj for 1 6 j 6 m be

the Lebesgue numbers for the m coverings {α−1
j (Ui), i ∈ I} of the simplex ∆n. Choose k,

such that
(

n
n+1

)k
6 L1, . . . , Lm. Then Bkα1 up to Bkαm are all chains in SU

n(X). Therefore

Bk(α) =
m∑
j=1

λjB
k(αj) =: α′ ∈ SU

n(X).

From part 2, we know that Bkα is a cycle as well that is homologous to α.

�

We conclude:

Corollary 1.7.13.
For any open covering U, the injective chain map

SU
∗ (X) ↪→ S∗(X)

induces an isomorphism in homology, HU
n (X) ∼= Hn(X).

Proof.
The map on homology is surjective, since for any cycle c ∈ Sn(X), we find by Lemma 1.7.12.3
a homologous cycle c′ ∈ SU

n(X).
The map is injective as well: suppose c ∈ SU

n(X) is a boundary in Sn(X), i.e. c = ∂e with
e ∈ Sn+1(X). Find k ∈ N such that Bk(e) ∈ SU

n+1(X) and

Bk(e)− e = ψ̃n−1(∂e) + ∂ψ̃n(e) = ψ̃n−1(c) + ∂ψ̃n(e) .

Thus
∂Bk(e)− ∂e = ∂ψ̃n−1(c)

is a boundary in SU
n(X). Thus,

c = ∂e = ∂(Bk(e)− ψ̃n−1(c))

is a boundary in SU
n(X) as well. �

We remark that this isomorphism actually comes from a homotopy equivalence of chain
complexes.

With this we get the main result of this section:
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Theorem 1.7.14 (Excision).
Let W ⊂ A ⊂ X such that W̄ ⊂ Å. Then the inclusion i : (X \W,A \W ) ↪→ (X,A) induces

an isomorphism of relative homology groups

Hn(i) : Hn(X \W,A \W ) ∼= Hn(X,A)

for all n > 0.

Proof.
• We first prove that Hn(i) is surjective.

Let c ∈ Sn(X,A) be a relative cycle, i.e. ∂c ∈ Sn−1(A). Consider the open covering
U = {Å,X \ W̄} =: {U, V } of X. Now subdivide and find k such that c′ := Bkc is a
chain in SU

n(X). It follows from Lemma 1.7.12.2 that c′ is homologous to c relative A.
Decompose c′ = cU + cV with cU and cV being chains on the corresponding open sets.
(This decomposition is not unique.)

The boundary of c′ is ∂c′ = ∂Bkc = Bk∂c; by assumption this is a chain in Sn−1(A).
Moreover, we find from the decomposition c′ = cU + cV

∂c′ = ∂cU + ∂cV

with ∂cU ∈ Sn−1(U) ⊂ Sn−1(A). Thus, ∂cV = ∂c′ − ∂cU ∈ Sn−1(A). Since ∂cV ∈ V is
supported in X \W , we have ∂cV ∈ Sn−1(A \W ). Therefore, cV is a relative cycle in
Sn(X \W,A \W ).

In Hn(X,A), we find [c] = [c′] = [cU + cV ] = [cV ], where we used in the first step Lemma
1.7.12.2. This shows that Hn(i)[cV ] = [c] ∈ Hn(X,A). Thus [cV ] is a preimage of [c] in
Hn(X \W,A \W ).

• The injectivity of Hn(i) is shown as follows.
Assume that there exists c ∈ Sn(X \W ) with ∂c ∈ Sn−1(A \W ) such that Hn(i)[c] = 0.
The last statement means that c is of the form c = ∂b + a′ for some b ∈ Sn+1(X) and
a′ ∈ Sn(A). We can choose all summands such that they avoid W .

We write b as bU + bV with bU ∈ Sn+1(U) ⊂ Sn+1(A) and bV ∈ Sn+1(V ) ⊂ Sn+1(X \W ).
Then

c = ∂bU + ∂bV + a′.

Note that a′ and ∂bU are chains in Sn(A\W ). So we have written c as a boundary of a chain
bV in Sn+1(X \W ) plus a chain a′+ ∂bU in Sn(A \W ). Thus [c] = 0 ∈ Hn(X \W,A \W ).

�

1.8 Mayer-Vietoris sequence

We consider the following situation: there are subspaces X1, X2 ⊂ X such that X1 and X2 are
open in X and such that X = X1 ∪X2. We consider the open covering U = {X1, X2}. We need
the following maps:

X1

κ1

  
X1 ∩X2

i1
::

i2 $$

X.

X2

κ2

>>
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Note that by definition, the sequence of complexes

0 //S∗(X1 ∩X2)
(i1,i2)//S∗(X1)⊕ S∗(X2) //SU

∗ (X) //0 (1)

is exact. Here, the second map is

(α1, α2) 7→ κ1(α1)− κ2(α2).

Note that here the open sets are ordered to define the difference.

Theorem 1.8.1 (Mayer-Vietoris sequence).
There is a long exact sequence

. . .
δ //Hn(X1 ∩X2) //Hn(X1)⊕Hn(X2) //Hn(X) δ //Hn−1(X1 ∩X2) // . . .

Proof.
The proof follows from the exact sequence (1) of chain complexes by Lemma 1.7.12, because
HU
n (X) ∼= Hn(X), by Corollary 1.7.13 �

Observation 1.8.2.

1. As an application, we calculate the homology groups of spheres. Let X = Sm and let
X± := Sm\{∓em+1}. The subspaces X+ and X− are contractible and therefore H∗(X

±) =
0 for all positive ∗.
The Mayer-Vietoris sequence is as follows

. . . δ //Hn(X+ ∩X−) //Hn(X+)⊕Hn(X−) //Hn(Sm) δ //Hn−1(X+ ∩X−) // . . .

For n > 1 we can deduce from Hn(X±) = 0

Hn(Sm) ∼= Hn−1(X+ ∩X−) ∼= Hn−1(Sm−1).

The first map is the connecting homomorphism δ and the second map is
Hn−1(i) : Hn−1(Sm−1)→ Hn−1(X+ ∩X−) where i is the inclusion of Sm−1 into X+ ∩X−
and this inclusion is a homotopy equivalence. Thus define

D := Hn−1(i)−1 ◦ δ : Hn(Sm)→ Hn−1(Sm−1) .

This D is an isomorphism for all n > 2.

We have to control what is going on in small degrees and dimensions.

2. We know from the Hurewicz isomorphism that H1(Sm) is trivial for m > 1, cf. Corollary
1.3.9. Here, we show this directly via the Mayer-Vietoris sequence:

. . .→ 0 ∼= H1(X+)⊕H1(X−)→ H1(Sm)
δ→ Z ∼= H0(X+ ∩X−)→ H0(X+)⊕H0(X−) ∼= Z⊕ Z.

We have to understand the map in the second line. Let 1 be a base point of X+ ∩ X−.
Then the map on H0 is

[1] 7→ ([1], [1]).

This map is injective and therefore the connecting homomorphism δ : H1(Sm)→ H0(X+∩
X−) is zero. We find

H1(Sm) ∼= 0, m > 1.
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3. We also compute H1(S1) using a Mayer-Vietoris argument and consider the case of n =
1 = m. In this case, the intersection X+ ∩ X− splits into two components. We choose
base points P+ ∈ X+ and P− ∈ X−. Consider the exact sequence

0 //H1(S1) δ //H0(X+ ∩X−)
(H0(i1),H0(i2)) //H0(X+)⊕H0(X−) //H0(S1)

which gives

0 //H1(S1) δ //Z⊕ Z //Z⊕ Z //Z.
The kernel of the last map, the difference of H0(κ1) and H0(κ2),

H0(X+)⊕H0(X−)→ H0(S1)

is spanned by ([P+], [P−]) and thus isomorphic to Z. This is the image of (H0(i1), H0(i2)).
Therefore, the sequence

0 //H1(S1) δ //Z⊕ Z //Z //0

is short exact; thus H1(S1) ∼= Z is a free abelian group of rank 1. We already knew this
from the Hurewicz isomorphism.

4. We now combine the arguments.

• For 0 < n < m we get by applying D repeatedly,

Hn(Sm)
∼= //Hn−1(Sm−1)

∼= // . . .
∼= //H1(Sm−n+1) ∼= π1(Sm−n+1).

and the latter is trivial by 2.

• Similarly, for 0 < m < n we have similarly

Hn(Sm)
∼= //Hn−1(Sm−1)

∼= // . . .
∼= //Hn−m+1(S1) ∼= 0.

The last claim follows directly by another simple Mayer-Vietoris argument.

• The remaining case 0 < m = n gives a non-vanishing result:

Hn(Sn)
∼= //Hn−1(Sn−1)

∼= // . . .
∼= //H1(S1) ∼= Z.

We can summarize the result as follows.

Proposition 1.8.3.
The homology groups of spheres are:

Hn(Sm) ∼=


Z⊕ Z, n = m = 0,

Z, n = 0,m > 0,

Z, n = m > 0,

0, otherwise.

We specify a generator of Hn(Sn).

Definition 1.8.4
Let µ0 := [P+]− [P−] ∈ H0(X+ ∩X−) ∼= H0(S0) and let µ1 ∈ H1(S1) ∼= π1(S1) be given by the
degree one map (i.e. the class of the identity on S1, i.e. the class of the loop t 7→ e2πit).

Define the higher µn via the map D from 1.8.2.1 as Dµn = µn−1. Then µn is called the
fundamental class in Hn(Sn).

In order to obtain a relative version of the Mayer-Vietoris sequence, we need a tool from
homological algebra.
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Lemma 1.8.5 (Five-Lemma).
Let

A1
α1 //

f1
��

A2
α2 //

f2
��

A3
α3 //

f3
��

A4
α4 //

f4
��

A5

f5
��

B1
β1 // B2

β2 // B3
β3 // B4

β4 // B5

be a commutative diagram of exact sequences. If the four maps f1, f2, f4, f5 are isomorphisms,
then so is f3.

Proof.
Again, we are chasing diagrams.

• We show that f3 is injective.
Assume that there is an a ∈ A3 with f3a = 0. Then β3f3a = f4α3a = 0, as well. But f4

is injective, thus α3a = 0. Exactness of the top row gives, that there is an a′ ∈ A2 with
α2a

′ = a. This implies
f3α2a

′ = f3a = 0 = β2f2a
′.

Exactness of the bottom row gives us a b ∈ B1 with β1b = f2a
′, but f1 is an isomorphism

so we can lift b to a1 ∈ A1 with f1a1 = b.

Thus f2α1a1 = β1b = f2a
′ and as f2 is injective, this implies that α1a1 = a′. So finally we

get that a = α2a
′ = α2α1a1, but the latter is zero, thus a = 0.

• For the surjectivity of f3, assume b ∈ B3 is given. Move b over to B4 via β3 and set
a := f−1

4 β3b. (Note here, that if β3b = 0 we actually get a shortcut: Then there is a
b2 ∈ B2 with β2b2 = b and thus an a2 ∈ A2 with f2a2 = b2. Then f3α2a2 = β2b2 = b.)

Consider f5α4a. This is equal to β4β3b and hence trivial. Therefore α4a = 0 and thus
there is an a′ ∈ A3 with α3a

′ = a. Then b− f3a
′ is in the kernel of β3, because

β3(b− f3a
′) = β3b− f4α3a

′ = β3b− f4a = 0.

Hence we get a b2 ∈ B2 with β2b2 = b − f3a
′. Define a2 as f−1

2 (b2), so a′ + α2a2 is in A3

and
f3(a′ + α2a2) = f3a

′ + β2f2a2 = f3a
′ + β2b2 = f3a

′ + b− f3a
′ = b.

�

We now consider a relative situation, so let X be a topological space with A,B ⊂ X open
in A ∪B and set U := {A,B}. This is an open covering of A ∪B ⊂ X. The following diagram
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of exact sequences combines absolute chains with relative ones:

0

��
0

��

0

��

0

��

Sn(A ∪B)

��
0 // Sn(A ∩B)

��

// Sn(A)⊕ Sn(B)

��

// SU
n(A ∪B)

ϕ
44

��

// 0

��

Sn(X)

��
0 // Sn(X)

��

∆ // Sn(X)⊕ Sn(X)

��

diff // Sn(X)

��

// 0

��

Sn(X,A ∪B)

��
0 // Sn(X,A ∩B)

��

// Sn(X,A)⊕ Sn(X,B) //

��

Sn(X)/SU
n(A ∪B)

��

//

ψ
44

0 0

0 0 0

Here, ψ is induced by the inclusion ϕ : SU
n(A ∪ B) → Sn(A ∪ B), ∆ denotes the diagonal

map and diff is the difference map. It is clear that the first two rows are exact. That the third
row is exact follows by a version of the nine-lemma or a direct diagram chase.

Consider the two right-most non-trivial columns in this diagram. Each gives a long exact
sequence in homology and we focus on five terms:

Hn(SU
∗ (A ∪B)) //

Hn(ϕ)

��

Hn(X) // Hn(S∗(X)/SU
∗ (A ∪B))

Hn(ψ)

��

δ // Hn−1(SU
∗ (A ∪B)) //

Hn−1(ϕ)

��

Hn−1(X)

Hn(A ∪B) // Hn(X) // Hn(X,A ∪B) δ // Hn−1(A ∪B) // Hn−1(X)

Then by the five-lemma 1.8.5, as Hn(ϕ) and Hn−1(ϕ) are isomorphisms by Corollary 1.7.13, so
is Hn(ψ). This observation, together with the bottom non-trivial exact row of the first diagram,
proves the following

Theorem 1.8.6 (Relative Mayer-Vietoris sequence).
If A,B ⊂ X are open in A ∪B, then the following sequence is exact:

. . .
δ //Hn(X,A ∩B) //Hn(X,A)⊕Hn(X,B) //Hn(X,A ∪B) δ // . . .

1.9 Reduced homology and suspension

For any path-connected space, the zeroth homology is isomorphic to the integers, so this copy of
Z is superfluous information and we want to get rid of it. Let pt denote the one-point topological
space. Then for any space X there is a unique continuous map ε : X → pt.

Definition 1.9.1
We define H̃n(X) := ker(Hn(ε) : Hn(X)→ Hn(pt)) and call it the reduced nth homology group
of the space X.

Remarks 1.9.2.

1. Note that H̃n(X) ∼= Hn(X) for all positive n.
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2. If X is path-connected, then H̃0(X) = 0, cf. Proposition 1.3.1.

3. Choose a base point x ∈ X. Then the composition

{x} ↪→ X → {x}

is the identity. Because of Hn(pt) ∼= Hn({x}), we get from proposition 1.6.8 about weak
retracts

H̃n(X)⊕Hn({x}) ∼= Hn(X) .

The retraction r : X → {x} splits the long exact sequence of relative homology for {x} →
X

. . .Hn({x})→ Hn(X)→ Hn(X, {x})→ . . .

and thus we identify reduced homology as relative homology, H̃n(X) ∼= Hn(X, {x}).

4. We can prolong the singular chain complex S∗(X) and consider the chain complex of free

abelian groups S̃∗(X):
. . .→ S1(X)→ S0(X)

ε−→ Z→ 0.

where ε(α) = 1 for every singular 0-simplex α. This is precisely the augmentation we
considered in Proposition 1.3.1. Then for all n > 0,

H̃∗(X) ∼= H∗(S̃∗(X)).

For every continuous map f : X → Y induces a chain map S∗(f) : S∗(X)→ S∗(Y ); for the
evaluation, we have εY ◦ S0(f) = εX . We thus obtain the following result:

Lemma 1.9.3.
The assignment X 7→ H∗(S̃∗(X)) is a functor, i.e. for a continuous map f : X → Y we get

an induced map H∗(S̃∗(f)) : H∗(S̃∗(X))→ H∗(S̃∗(Y )) such that the identity on X induces the
identity and composition of maps is respected.

As a consequence, H̃∗(−) is a functor.

Definition 1.9.4
For ∅ 6= A ⊂ X we define

H̃n(X,A) := Hn(X,A).

Since we identified in Remark 1.9.2.3 reduced homology groups with relative homology
groups Hn(X, {x}), we obtain a reduced version of the Mayer-Vietoris sequence. A similar
remark applies to the long exact sequence for a pair of spaces.

Proposition 1.9.5.
For each pair (X,A) of spaces, there is a long exact sequence

. . . // H̃n(A) // H̃n(X) // H̃n(X,A) // H̃n−1(A) // . . .

and a reduced Mayer-Vietoris sequence, if X1 ∩X2 6= ∅, which is identical in positive degrees
and ends as

. . . H̃0(X1 ∩X2)→ H̃0(X1)⊕ H̃0(X2)→ H̃0(X)→ 0

Examples 1.9.6.
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1. Recall that we can express the real projective plane RP 2 as the quotient space of S2

modulo antipodal points or as a quotient of D2:

RP 2 ∼= S2/± id ∼= D2/z ∼ −z for z ∈ S1.

We use the latter definition and set X = RP 2, A = X \ {[0, 0]} (which is an open Möbius
strip and hence homotopically equivalent to S1) and B = D̊2. Then

A ∩B = D̊2 \ {[0, 0]} ' S1.

Thus we know that H1(A) ∼= Z, H1(B) ∼= 0 and H2(A) = H2(B) = 0. We choose
generators for H1(A) and H1(A ∩B) as follows:

����&%
'$
− −• γ

a

Let a be the path that runs along the outer circle in mathematical positive direction half
around starting from the point (1, 0). This is the generator for H1(A). Let γ be the loop
that runs along the inner circle in mathematical positive direction. This is the generator
for H1(A ∩B); note that A ∩B ' D \ {0}. Then the inclusion iA∩B : A ∩B → A induces

H1(iA∩B)[γ] = 2[a].

This suffices to compute H∗(RP 2) up to degree two because the long exact sequence is

H̃2(A)⊕H̃2(B) = 0→ H̃2(X)→ H̃1(A∩B) ∼= Z ·2→ H̃1(A) ∼= Z→ H̃1(X)→ H̃0(A∩B) = 0.

On the two copies of the integers, the map is given by multiplication by two and thus we
obtain:

H2(RP 2) ∼= ker(2· : Z→ Z) = 0,

H1(RP 2) ∼= coker(2· : Z→ Z) ∼= Z/2Z,
H0(RP 2) ∼= Z.

The higher homology groups are trivial, because there Hn(RP 2) is located in a long exact
sequence between trivial groups.

2. We can now calculate the homology groups of bouquets of spaces in terms of the homology
groups of the single spaces, at least in good cases. Let (Xi)i∈I be a family of topological
spaces with chosen basepoints xi ∈ Xi. Consider the bouquet

X =
∨
i∈I

Xi.

If the inclusion of xi into Xi is pathological, we cannot apply the Mayer-Vietoris sequence

However, we get the following:
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Proposition 1.9.7.
If there are neighbourhoods Ui of xi ∈ Xi together with a deformation of Ui to {xi}, then we
have for any finite E ⊂ I

H̃n(
∨
i∈E

Xi) ∼=
⊕
i∈E

H̃n(Xi).

In the situation above, we say that the space Xi is well-pointed with respect to the point
xi ∈ Xi.

Proof.
First we consider the case of two bouquet summands. We have X1 ∨ U2 ∪ U1 ∨X2 as an open
covering of X1 ∨X2. Since (X1 ∨ U2) ∩ (U1 ∨X2) = U1 ∩ U2 is contractible, the Mayer-Vietoris
sequence then gives that Hn(X) ∼= Hn(X1 ∨ U2) ⊕Hn(U1 ∨X2) for n > 0. For H0 we get the
exact sequence

0→ H̃0(X1 ∨ U2)⊕ H̃0(U1 ∨X2)→ H̃0(X)→ 0.

By induction we obtain the case of finitely many bouquet summands. �
We also get

H̃n(
∨
i∈I

Xi) ∼=
⊕
i∈I

H̃n(Xi)

but for this one needs a colimit argument. We postpone that for a while.

We can extend such results to the full relative case. Let A ⊂ X be a closed subspace
and assume that A is a strong deformation retract of an open neighbourhood A ⊂ U . Let
π : X → X/A be the canonical projection and b = {A} ∈ X/A the image of A. Then X/A is
well-pointed with respect to the point b ∈ X/A by the neighborhood π(U).

Proposition 1.9.8.
In the situation above

Hn(X,A) ∼= H̃n(X/A), 0 6 n.

Proof.
The canonical projection π : X → X/A induces a homeomorphism of pairs (X \ A,U \ A) ∼=
(X/A \ {b}, π(U) \ {b}). Consider the following diagram:

Hn(X,A)
∼= //

Hn(π)

��

Hn(X,U) Hn(X \ A,U \ A)
∼=oo

Hn(π)∼=
��

Hn(X/A, b)
∼= // Hn(X/A, π(U)) Hn(X/A \ {b}, π(U) \ {b})

∼=oo

The upper and lower left arrows are isomorphisms because A is a deformation retract of U ,
the isomorphism in the upper right is a consequence of excision, because A = Ā ⊂ U , cf.
Theorem 1.7.14. The lower right one follows from excision as well. The right vertical arrow is
an isomorphism, because we have a homeomorphism of pairs. �

Definition 1.9.9

1. The cone of a topological space X is the topological space

CX := X × [0, 1]/X × {0} .
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2. The suspension of a topological space X is the topological space

ΣX := X × [0, 1]/(x1, 0) ∼ (x2, 0) and (x1, 1) ∼ (x2, 1) for all x1, x2 ∈ X .

Remarks 1.9.10.

1. The cone over a point p is an interval. The cone over an interval is a triangle, a 2-simplex.
The cone over an n-simplex is an (n+1)-simplex. The cone over Sn is a closed (n+1)-ball.

2. Note that for any topological space X, the cone CX is contractible to its apex. Thus
H̃n(CX) = 0 for all n > 0. Similarly, for A ⊂ X, we have CA ⊂ CX and H̃n(CX,CA) = 0
for all n > 0.

3. The suspension of Sn is ΣSn ∼= Sn+1.

4. We have natural embeddings X → CX with x 7→ [x, 1] and CX → ΣX with x 7→ [x, 1
2
].

We can see the suspension as two cones, glued together at their bases.

Theorem 1.9.11 (Suspension isomorphism).
Let A ⊂ X be a closed subspace and assume that A is a deformation retract of an open

neighbourhood A ⊂ U . Then

Hn(ΣX,ΣA) ∼= H̃n−1(X,A), for all n > 0.

Proof.

1. We first note two equivalences:

X ∪CA/CA ' X/A, where the cone CA is attached to X by identifying A ⊂ X and the
base A ⊂ CA:
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2. Consider the triple (CX,X ∪CA,CA). We obtain from Proposition 1.6.11 the long exact
sequence on homology groups

. . . //Hn(CX,CA) //Hn(CX,CA ∪X) δ //H̃n−1(X ∪ CA,CA) // . . .

Since cones are contractible, the connecting morphism δ gives us isomorphisms

Hn(CX,CA ∪X) ∼= H̃n−1(X ∪ CA,CA)

3. Using Proposition 1.9.8 and the equivalences from part 1. of the proof, we compute the
right hand side:

H̃n−1(X ∪ CA,CA)
1.9.8∼= H̃n−1(X ∪ CA/CA)

1.∼= H̃n−1(X/A)
1.9.8∼= H̃n−1(X,A) .

Similarly, we get for the left hand side

H̃n(CX,CA ∪X)
1.9.8∼= H̃n(CX/CA ∪X)

1.∼= H̃n(ΣX/ΣA)
1.9.8∼= Hn(ΣX,ΣA).

�

Note that the corresponding statement is wrong for homotopy groups. We have ΣS2 ∼= S3,
but π3(S2) ∼= Z, whereas π4(S3) ∼= Z/2Z, so homotopy groups (unlike homology groups) do
not satisfy such an easy form of a suspension isomorphism. There is a Freudenthal suspension
theorem for homotopy groups, but that is more complicated. For the above case it yields:

π1+3(S3) ∼= π1+4(S4) ∼= . . . =: πs1

where πs1 denotes the first stable homotopy group of the sphere.

1.10 Mapping degree

Recall that we defined in Definition 1.8.4 fundamental classes µn ∈ H̃n(Sn) ∼= Z for all n > 0.

Definition 1.10.1
A continuous map f : Sn → Sn induces a homomorphism

H̃n(f) : H̃n(Sn)→ H̃n(Sn)

and therefore we get
H̃n(f)µn = deg(f)µn

with deg(f) ∈ Z. We call this integer the degree of f .

In the case n = 1 we can relate this notion of a mapping degree to the one defined via the
fundamental group of the 1-sphere: if we represent the generator of π1(S1, 1) as the class given
by the loop

ω : [0, 1]→ S1, t 7→ e2πit,

then the abelianized Hurewicz map, hab : π1(S1, 1)→ H1(S1), sends by definition 1.8.5 the class
of ω precisely to µ1 ∈ H1(S1) and therefore the naturality of hab

π1(S1, 1)
π1(f) //

hab
��

π1(S1, 1)

hab
��

H1(S1)
H1(f) // H1(S1)
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shows that
deg(f)µ1

def
= H1(f)µ1

nat
= hab(π1(f)[w])

def
= hab(k[w]) = kµ1.

where k is the degree of f defined via the fundamental group. Thus both notions coincide for
n = 1.

As we know that the connecting homomorphism in the long exact sequence in relative
homology induces an isomorphism between Hn(Dn,Sn−1) and H̃n−1(Sn−1), we can consider
degrees of maps f : (Dn,Sn−1) → (Dn,Sn−1) by defining a fundamental class µ̄n := δ−1µn ∈
Hn(Dn,Sn). Then Hn(f)(µ̄n) := deg(f)µ̄n gives a well-defined integer deg(f) ∈ Z.

The degree of self-maps of Sn satisfies the following properties:

Proposition 1.10.2.

1. If f is homotopic to g, then deg(f) = deg(g).

2. The degree of the identity on Sn is one.

3. The degree is multiplicative, i.e., deg(g ◦ f) = deg(g)deg(f).

4. If f is not surjective, then deg(f) = 0.

Proof.
The first three properties follow directly from the definition of the degree. If f is not surjective,
then it is homotopic to a constant map and this has degree zero. �

It is true that the group of (pointed) homotopy classes of self-maps of Sn is isomorphic to
Z and thus the first statement in Proposition 1.10.2 can be upgraded to an ’if and only if’, but
we will not prove that here.

Recall that ΣSn ∼= Sn+1. If f : Sn → Sn is continuous, then the suspension Σ(f) : ΣSn → ΣSn
is given as ΣSn 3 [x, t] 7→ [f(x), t].

Lemma 1.10.3.
Suspensions leave the degree invariant, i.e. for f : Sn → Sn we have

deg(Σ(f)) = deg(f).

In particular, for every integer k ∈ Z there is a continuous map f : Sn → Sn with deg(f) = k.

Proof.
The suspension isomorphism of Theorem 1.9.11 is induced by a connecting homomorphism
which is functorial by Proposition 1.5.5. Using the isomorphism Hn+1(Sn+1) ∼= Hn+1(ΣSn),
the connecting homomorphism sends µn+1 ∈ Hn+1(Sn+1) to ±µn ∈ H̃n(Sn). But then the
commutativity of

Hn+1(Sn+1)
∼= // Hn+1(ΣSn)

δ
��

Hn+1(Σf)// Hn+1(ΣSn)

δ
��

Hn+1(Sn+1)
∼=oo

H̃n(Sn)
Hn(f) // H̃n(Sn)

ensures that ±deg(f)µn = ±deg(Σf)µn with the same sign. �
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For the degree of a based self-map of S1 one has an additivity relation deg(ω′′?ω′) = degω′′+
degω′ with respect to concatenation of paths. We can generalize this to higher dimensions.
Consider the pinch map T : Sn → Sn/Sn−1 ' Sn ∨ Sn and the fold map F : Sn ∨ Sn → Sn. Here,
F is induced by the identity of Sn.

&%
'$

••
T−→

&%
'$&%
'$
• F−→
&%
'$

Proposition 1.10.4.
For f, g : Sn → Sn based, we have

deg(F ◦ (f ∨ g) ◦ T ) = deg(f) + deg(g).

Proof.
The map Hn(T ) sends µn to (µn, µn) ∈ H̃nSn ⊕ H̃nSn ∼= H̃n(Sn ∨ Sn). Under this isomor-
phism, the map Hn(f ∨ g) corresponds to (µn, µn) 7→ (H̃n(f)µn, H̃n(g)µn) and this yields
(deg(f)µn, deg(g)µn) which under the fold map is sent to the sum. �

We use the mapping degree to show some geometric properties of self-maps of spheres.

Proposition 1.10.5.
Let f (n) : Sn → Sn be the map

(x0, x1, . . . , xn) 7→ (−x0, x1, . . . , xn).

Then f (n) has degree −1.

Proof.
We prove the claim by induction. µ0 was by definition 1.8.4 the difference class [+1]− [−1], and

f (0)([+1]− [−1]) = [−1]− [+1] = −µ0.

We defined µn in such a way that Dµn = µn−1. Therefore, as D is obtained from a connecting
homomorphism and thus by proposition 1.5.5 natural,

Hn(f (n))µn = Hn(f (n))D−1µn−1 = D−1Hn−1(f (n−1))µn−1 = D−1(−µn−1) = −µn.

�

Corollary 1.10.6.
The antipodal map

A : Sn → Sn
x 7→ −x

has degree (−1)n+1.
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Proof.
Let f

(n)
i : Sn → Sn be the map (x0, . . . , xn) 7→ (x0, . . . , xi−1,−xi, xi+1, . . . , xn). As in Proposition

1.10.5, one shows that the degree of f
(n)
i is −1. As A = f

(n)
n ◦ . . . ◦ f (n)

0 , the claim follows from
Proposition 1.10.2.3. �
In particular, for even n, the antipodal map cannot be homotopic to the identity.

Proposition 1.10.7.
Let f, g : Sn → Sn with f(x) 6= g(x) for all x ∈ Sn, then f is homotopic to A ◦ g, with A the
antipodal map. In particular,

deg(f) = deg(A ◦ g) = deg(A) · deg(g) = (−1)n+1deg(g).

Proof.
By assumption, for all x ∈ Sn the segment t 7→ (1− t)f(x)− tg(x) does not pass through the
origin for 0 6 t 6 1. Thus the homotopy

H(x, t) =
(1− t)f(x)− tg(x)

||(1− t)f(x)− tg(x)||

with values in Sn connects f to −g = A ◦ g. �

Corollary 1.10.8.
For any f : Sn → Sn with deg(f) = 0 there exists a point x+ ∈ Sn with f(x+) = x+ and a point
x− with f(x−) = −x−.

Proof.
If f(x) 6= x = id(x) for all x, then by Proposition 1.10.7, f is homotopic to A ◦ id = A. Thus
deg(f) = deg(A) 6= 0. If f(x) 6= −x for all x, then f is homotopic to A ◦ (−id) and thus
deg(f) = (−1)n+1deg(A) 6= 0. �

Corollary 1.10.9.
If n is even, then for any continuous map f : Sn → Sn, there is an x ∈ Sn with f(x) = x or
f(x) = −x.

Proof.
Because n is even, deg(A) = −1 If f(x) 6= x for all x ∈ Sn, by the argument given in the
proof of Corollary 1.10.8, we have deg(f) = deg(A) = −1. If f(x) 6= −x for all x ∈ Sn, then
deg(f) = deg(A) deg(−id|Sn) = 1. Both at the same time is impossible. �

Finally, we can say the following about hairstyles of hedgehogs of arbitrary even dimension:

Proposition 1.10.10 (Hairy Ball theorem).
Any tangential vector field on an even-dimensional sphere S2k vanishes in at least one point.

Proof.
Recall that we can describe the tangent space at a point x ∈ S2k ⊂ R2k+1 as

Tx(S2k) = {y ∈ R2k+1|〈x, y〉 = 0}.
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Assume that V is a tangential vector field which does nowhere vanish, i.e. V (x) 6= 0 for all
x ∈ S2k and V (x) ∈ Tx(S2k) for all x. Consider the continuous map

f : S2k → S2k

x 7→ V (x)
||V (x)||

Assume f(x) = x, which amounts to V (x) = ||V (x)||x. But this means that V (x) points into
the direction of x and thus it cannot be tangential. Thus f(x) 6= x for all x ∈ S2k. Similarly,
f(x) = −x yields the same contradiction. Thus the existence of such a V is in contradiction to
Corollary 1.10.9. �

1.11 CW complexes

Definition 1.11.1
A topological space X is called an n-cell, if X is homeomorphic to Rn. The number n is called
the dimension of the cell.

Examples 1.11.2.

1. Every point is a zero cell. The spaces D̊n ∼= Rn ∼= Sn \N are n-cells.

2. Note that an n-cell cannot be an m-cell for n 6= m, because Rn � Rm for n 6= m. This
follows, since Rn ∼= Rm would imply

Sn−1 ' Rn \ {0} ∼= Rm \ {0} ' Sm−1 ,

but H̃n−1(Sn−1) ∼= Z for all n and H̃n−1(Sm−1) = 0 for n 6= m. Hence the dimension of a
cell is well-defined.

Definition 1.11.3
A cell decomposition of a space X is a decomposition of X into subspaces, each of which is a
cell of some dimension, i.e.,

X =
⊔
i∈I

Xi, Xi
∼= Rni .

Here, this decomposition is meant as a set, not as a topological space.

Examples 1.11.4.

1. The boundary of a 3-dimensional cube has a cell decomposition into 8 points, 12 open
edges, and 6 open faces.

2. The standard 3-simplex can be decomposed into 4 zero-cells, six 1-cells, four 2-cells, and
a 3-cell.

3. The n-dimensional sphere (for n > 0) has a cell decomposition into the north pole and
its complement, thus into a single zero-cell and n-cell.

Definition 1.11.5
A topological Hausdorff space X together with a cell decomposition is called a CW complex,
if it satisfies the following conditions:
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(a) [Characteristic maps] For every n-cell σ ⊂ X, there is a continuous map Φσ : Dn → X
such that the restriction of Φσ to the interior D̊n is a homeomorphism

Φσ|D̊n : D̊n
∼=−→ σ

and such that Φσ maps Sn−1 ∼= ∂Dn to the union of cells of dimension at most n− 1.

(b) [Closure finiteness] For every n-cell σ, the closure σ̄ ⊂ X has a non-trivial intersection
with only finitely many cells of X.

(c) [Weak topology] A subset A ⊂ X is closed, if and only if A ∩ σ̄ ⊂ σ is closed for all cells
σ in X.

Remarks 1.11.6.

1. The map Φσ as in (a) is called a characteristic map of the cell σ. Its restriction Φσ|Sn−1

to the boundary ∂Dn ∼= Sn−1 is called an attaching map.

2. Property (b) is the closure finite condition: the closure of every cell is contained in finitely
many cells. This is the ’C’ in CW.

3. Since σ̄ is closed in X, condition (c) is equivalent to requiring that A ∩ σ̄ is closed in X.
Condition (c) can be replaced by the equivalent axiom that a subset A ⊂ X is open, if
and only if A ∩ σ̄ is open in σ̄ for all cells σ in X.

4. If X is a CW complex with only finitely many cells, then we call X finite. Conditions (b)
and (c) are then automatically fulfilled.

5. Every non-empty CW complex must contain at least one zero cell. Indeed, if n > 0 would
be the lowest dimension of a cell, its boundary Sn−1 could not be taken into cells of
dimension at most n− 1.

6. It follows from axiom (a) that for every n-cell σ, we have σ = Φσ(Dn).

Proof: From the general inclusion f(B) ⊂ f(B) for continuous maps, we conclude

σ = Φσ(D̊n) ⊃ Φσ(Dn) ⊃ σ .

As a compact subspace of a Hausdorff space, Φσ(Dn) is closed; since it lies between σ and
σ, we conclude Φσ(Dn) = σ. In particular the closure σ is compact in X as the continuous
image of the compact set Dn.

7. It follows that σ̄ \σ for an n-cell σ is contained in the union of cells of dimension at most
n− 1.

8. Every finite CW complex is compact, since it is the union of finitely many compact
subspaces Φσ(Dn).

Examples 1.11.7.

1. The CW structures on a fixed topological space are not unique. For example, S2 with the
CW structure from the cell-decomposition S2 \ {N} t {N} has a single 0-cell consisting
of the north pole and one 2-cell. Projections of a tetrahedron, cube, octahedron or even
less regular bodies to the sphere provide other CW structures.
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2. Consider the following spaces with cell decomposition:

Figure 1 has two 0-cells and two 1-cells. The cell boundary of one of the 1-cells is not
contained in 0-cells, cf. Remark 1.11.6.7. Hence axiom (a) is violated. It is satisfied in
figure 2, where we have four 1-cells and four 0-cells. Figure 3 with three 1-cells and three
0-cells is not a CW complex, since the cell closure of one of the 1-cells is not compact.
Figure 4 is again a CW complex.

3. Consider the topological space X = X1 ∪X2 ⊂ R2 with

X1 := {(x, sin 1

x
) | 0 < x < 1} ⊂ R2 X2 := {(0, y) | − 1 6 y 6 1}

with the topology induced from R2. We consider a cell decomposition with (0,±1) as
0-cells and X̊2 and X1 as 1-cells. Here the axiom (a) is violated, since the boundary of
X̊1 is not in the 0-skeleton. (This space is indeed not CW decomposable.)

4. Consider the disc with the following two different cell decompositions:

• The center 0 ∈ D2 and any point on the boundary are declared to be a 0-cell. Every
radius is a 1-cell. Axioms (a) and (b) are satisfied, but axiom (c) is not: take an open
interval on the boundary. Then all intersections with all closures of cells are closed,
but it is not a closed subspace of D2.

• Any point in the boundary is a 0-cell, the only 2-cell is D̊2. Axiom (b) is not satisfied,
since the closure of the two-cell has a non-trivial intersection with infinitely many
0-cells. But axioms (a) and (c) hold.

5. The unit interval [0, 1] has a CW structure with two zero cells and one 1-cell. But for
instance the decomposition σ0

0 = {0}, σ0
k = { 1

k
}, k > 0 and σ1

k = ( 1
k+1

, 1
k
) does not give a

CW structure on [0, 1]. Consider the following countable subset A ⊂ [0, 1]

A :=

{
1

2

(
1

k
+

1

k + 1

)
|k ∈ N

}
.

Then A ∩ σ̄1
k is precisely the point 1

2
( 1
k

+ 1
k+1

). This is closed, but the subset A is not
closed in [0, 1], since it does not contain the limit point 0 of A.

Remark 1.11.8.

• Historically, the notion of a simplicial complex plays an important role: a setK of simplices
in Rn is called a simplicial complex or polyhedron, if the following conditions are satisfied:

(a) If K contains a simplex, it contains all faces of this simplex.

(b) The intersection of two simplices of K is either empty or a common face.

(c) K is locally finite, i.e. every point of Rn has a neighborhood that intersects only
finitely many simplices of K.
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A simplicial map is a map that takes any k-simplex affinely into a k′-simplex with k′ 6 k.

• The subspace |K| := ∪s∈Ks ⊂ Rn is called the topological space underlying the complex
K. Simplicial homology can be defined for a simplicial complex; it depends only on |K|.
Simplicial homology has various disadvantages: 2 for example, S2 can be written as a
simplicial complex with 14 simplices only (obtained from the projection of the tetrahedron
to the sphere), but as a CW complex with a 0-cell and a 2-cell only. A 2-torus S1 × S1

can be written as a CW complex with 4 cells, but the smallest simplicial complex has 42
cells.

Definition 1.11.9

1. The union Xn :=
⋃
σ⊂X,dim(σ)6n σ of cells of dimension at most n is called the n-skeleton

of X.

2. If we haveX = Xn, butXn−1 ( X, then we say thatX is n-dimensional, i.e., dim(X) = n.

3. A subset Y ⊂ X of a CW complex X is called a subcomplex (sub-CW complex), if it has
a cell decomposition by cells of X and if for any cell σ ⊂ Y , also its closure σ in X is
contained in Y , i.e. σ̄ ⊂ Y .

4. For any subcomplex Y ⊂ X, (X, Y ) is called a CW pair.

We characterize subcomplexes:

Lemma 1.11.10.
Let X be a CW complex and Y ⊂ X be a subspace, together with a cell decomposition by a
subset of cells of X. Then the following conditions are equivalent:

1. Y is a subcomplex, i.e. for any cell σ ⊂ Y , the closure σ in X is contained in Y .

2. Y is closed in X.

3. The cell decomposition (with the cells of X) endows Y with the structure of a CW
complex.

Proof.

2⇒ 1 is trivial: σ ⊂ Y = Y . (Here the bar denotes closure in X, of course.)

1⇒ 2 The topology of X is such by axiom “W” that Y is closed, if and only if Y ∩ σ is closed
in X for all cells σ in X. Since X is closure finite, σ hits only finitely many cells of X.
Since Y is the union of cells of X, only finitely many of these cells appear in

σ ∩ Y = σ ∩ (σ1 ∪ . . . ∪ σr)

with σi cells of Y . By 1., σi ⊂ Y , thus

σ ∩ Y = σ ∩ (σ1 ∪ . . . ∪ σr)

The intersection of finite unions of closed subsets of X is closed in X, thus this is closed
in X.

2“Computing homology with simplicial chains is like computing integrals
∫ b

a
f(x)dx with approximating

Riemann sums.” (Dold, Lectures in algebraic topology, 1972)
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3⇒ 1 For any cell σ ⊂ Y , a characteristic map Φ′σ for Y exists by 3. It is also characteristic for
X. Remark 1.11.6.6 that σ = Φ′σ(D) now implies that the closure of σ in Y agrees with
the closure of σ in X.

1,2⇒3 1 implies that a characteristic map for a cell σ ⊂ X relative to the complex X is also char-
acteristic relative to Y . This implies the existence of characteristic maps for Y . Closure
finiteness for Y is immediate from the one for X. Thus axioms (a) and (b) hold.

We still have to show that for A ⊂ Y the condition that A∩σY is closed in Y for all cells
σ ⊂ Y implies that A is closed in Y . (Here σY is the closure of σ in Y .) By 2), a set is
closed in Y , if and only if it is closed in X.

It follows that the closure of each cell σ ⊂ Y in Y agrees with the closure of σ in X. It
also follows that it is enough to show that A ∩ σX is closed in X for all cells σ ⊂ X.
Closure finiteness implies

σ ∩ A = σ ∩ (σ1 ∪ . . . ∪ σr) ∩ A

where we can assume that σi are all cells in Y . Now

σ ∩ A = σ ∩ (σ1 ∪ . . . ∪ σr) ∩ A

and by assumption A ∩ σi is closed in X for all i. Thus A ∩ σ is closed in X.

�

Corollary 1.11.11.

1. Arbitrary intersections and arbitrary unions of subcomplexes are again subcomplexes.

2. The skeleton Xn is a subcomplex.

3. Every union of n-cells in X with Xn−1 forms a subcomplex.

4. Every cell lies in a finite subcomplex.

Proof.

1. The subcomplexes are closed in X by Lemma 1.11.10, hence their intersection is closed
and by Lemma 1.11.10 a subcomplex. The statement about the union follows directly
from the definition of a subcomplex.

2. and 3. follow from the observation that for an n-cell σ we have that σ = (σ \ σ)∪ σ is contained
in Xn−1 ∪ σ.

4. Induction on the dimension of the cell; then use closure finiteness and σ = Φσ(Dn).

�

We want to understand the topology of CW complexes.

Remarks 1.11.12.

1. Cells do not have to be open in X. For example, in the CW structure on [0, 1] with two
zero cells 0 and 1, the 0-cells are not open in [0, 1].
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2. If X is a CW complex and σ is an n-cell, then σ is open in the n-skeleton Xn. Indeed,
for x ∈ σ, choose a neighborhood U that is open in σ. The intersection U ∩ σ′ for any
other cell σ′ is empty, unless σ′ = σ. (Since there are no cells of higher dimension, only
the boundary of σ intersects other cells.) By the weak topology, then U is also open in
X.

The n-skeleton Xn is by corollary 1.11.11.2 a subcomplex and thus by lemma 1.11.10.2
closed in X.

3. We can replace condition (c), that A is closed (resp. open) in X, if and only if the
intersection of A with σ̄ is closed (resp. open) in σ for any cell σ, by the equivalent
condition that A is closed (resp. open) in X if and only if A ∩Xn is closed (resp. open)
in Xn for all n > 0.

4. A CW-complex X is the direct limit of its skeleta, lim−→X
n. Recall that a direct limit

of a of a directed system of topological spaces (Xn)n∈N that is an ascending system of
subspaces X0 ⊂ X1 ⊂ . . . is the union X =

⋃
n>0X

n = tXn/ ∼ with the quotient
topology. Thus a CW complex has the final (“weak”) topology. This is the ’W’

Such a direct limit has the following universal property: for any system of maps (fn : Xn →
Z)n>0 such that fn+1|Xn = fn there is a uniquely determined continuous map f : X → Z
such that f |Xn = fn. This is important for constructing maps out of CW complexes by
extending maps recursively on n-cells.

Using the universal property of the sum of topological spaces, the characteristic maps of
all cells combine into a single map

Φ : tσDnσ → X

which endows X with the quotient topology.

Definition 1.11.13
Let X and Y be CW complexes. A continuous map f : X → Y is called cellular, if f(Xn) ⊂ Y n

for all n > 0.

The category of CW complexes together with cellular maps is rather flexible. Most of the
classical constructions do not lead out of it: for example, CW complexes nicely behave with
respect to collapsing subspaces to points. If X is a CW complex and A ⊂ X a subcomplex,
the cell decomposition of X/A consisting the zero-cell A and the cells of X \ A is again a CW
decomposition. Thus X/A is a CW complex in a canonical way.

However, one has to be careful with respect to products:

Proposition 1.11.14.
If X and Y are CW complexes, then X × Y is a CW complex, if one of the factors is locally
compact.

Proof.
As products of cells are cells, X×Y inherits a cell decomposition from its factors. Characteristic
maps are products of the characteristic maps for the factors. Closure finitenss follows from
σ × τ = σ × τ . We need to ensure that X × Y carries the weak topology.

To this end, we need a few auxiliary facts:
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• For two spaces U, V , let C(U, V ) be the set of all continuous maps from U to V . The
topology of C(U, V ) is generated (under finite intersections and arbitrary unions) by the
sets V (K,O) := {f ∈ C(U, V )|f(K) ⊂ O} for compact K ⊂ U and open O ⊂ V . This
is called the compact-open topology. (If U is compact and (V, d) is a metric space, the
compact-open topology is the one of the metric of uniform convergence,

d(f, g) := sup
u∈U

d(f(u), g(u)) ,

see [Laures-Szymik, p. 72].)

• If Z is locally compact and all spaces are Hausdorff, there is a homeomorphism

C(X × Z,W ) ∼= C(X,C(Z,W )) (∗)

of topological spaces. Here, for f : X ×Z → W we consider for any given x ∈ X the map

f#(x) : Z → W
z 7→ f(x, z)

This yieds a continous map f# : x 7→ f#(x). The homeomorphism (∗) sends f to f# ∈
C(X,C(Z,W )).

• Using these facts, we show the following Lemma:
Let X, Y and Z be topological spaces satisfying the Hausdorff condition and suppose
that π : X → Y gives Y the quotient topology and that Z is locally compact. Then

π × id : X × Z → Y × Z

gives Y × Z the quotient topology.

We have to show that Y ×Z has the universal property of a quotient space. Hence suppose
that g : Y ×Z → W is a map of sets and assume that the composition g◦(π×id) : X×Z →
Y × Z → W is continuous.

Under the adjunction (∗), the map g ◦ (π × id) corresponds to the composite

g̃ : X π //Y
g# //C(Z,W ).

which is continuous as the image under the adjunction (∗). Since Y carries the quotient
topology, the map g# is continuous and hence, again by (∗), the map g : Y × Z → W is
continuous, too.

• With the help of this result we consider the characteristic maps of X and Y ,

Φσ : Dnσ → X, for σ an nσ-cell in X

Ψτ : Dmτ → Y, for τ an mτ -cell in Y.

We use the product of topological spaces to combine these maps to a single map and
write X × Y as a target of a map

Φ×Ψ: (
⊔
σ

Dnσ)× (
⊔
τ

Dmτ )→ X × Y.

To establish that X × Y has the weak topology, we can show that X × Y carries the
quotient topology with respect to this map. We know that each Dnσ is locally compact,
thus so is the disjoint union of closed discs. The map id⊔

Dnσ ×Ψ gives (
⊔
Dnσ)× Y the

quotient topology and by assumption Y is locally compact and therefore, by the result of
the previous point, Φ× idY induces the quotient topology on X × Y .
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Lemma 1.11.15.
If D is a subset of a CW complex X and D intersects each cell in at most one point, then D
is discrete.

Proof.
Let S be an arbitrary subset of D. It suffices to show that S is closed. The closure σ of any
cell σ of X is covered by finitely many cells. Hence S ∩ σ̄ is finite. Since X is by definition
Hausdorff (thus T1), S ∩ σ̄ is closed in σ̄. Since this holds for all cells σ, the weak topology
guarantees that S is closed in X. �

Corollary 1.11.16.
Let X be a CW complex.

1. Every compact subset K ⊂ X is contained in a finite union of cells.

2. The space X is compact, if and only if it is a finite CW complex.

3. The space X is locally compact, if and only if it is locally finite, i.e. every point has a
neighborhood that is contained in finitely many cells.

Proof.

• We show that 1. implies one implication in 2. If X is compact, then by 1. it is contained
in a finite union of cells. The converse was shown in Remark 1.11.6.8.

• It is clear that 2. implies 3.

• Thus we only prove 1: consider the intersections K ∩σ with all cells σ and choose a point
pσ in every non-empty intersection. Then D := {pσ|σ a cell in X} is discrete by Lemma
1.11.15. It is also compact and therefore finite.

�

Corollary 1.11.17.
If f : K → X is a continuous map from a compact space K to a CW complex X, then the
image of K under f is contained in a finite skeleton.

For the proof just note that the image f(K) is compact in X and apply 1.11.16.1.

Proposition 1.11.18.
Let A be a subcomplex of a CW complex X. Then X×{0}∪A× [0, 1] is a strong deformation

retract of X × [0, 1].

Proof.

• Consider first the case when X = Dn and A = ∂Dn = Sn−1. For r : Dn × [0, 1] →
Dn × {0} ∪ Sn−1 × [0, 1] we can choose the standard retraction of a cylinder onto its
bottom and sides, cf. Figure VII-6 in Bredon, p. 451.
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• We inductively construct retractions

ρr : X × {0} ∪ (A× I ∪Xr × I)→ X × {0} ∪ A× [0, 1] ,

where ρr+1 extends ρr. Suppose that ρr−1 is given. Then extending to an r-cell of X
amounts to extending on Dr × [0, 1] along Dr × {0} ∪ Sr−1 × [0, 1]. As we have seen, this
can be done.

These maps for all r-cells fit together to a map on the r-skeleton (X × [0, 1])r which, by
the weak topology, fit together to a retract X × [0, 1]→ X × {0} ∪ A× [0, 1].

�

Definition 1.11.19

1. A map p : E → B has the homotopy lifting property, if for any space Y and any homotopy

h : Y × [0, 1]→ B

and any map g : Y → E such that p ◦ g = h0 there exists a map H : Y × I → E with
p ◦H = h such that H(y, 0) = g(y) for all y ∈ Y . As a diagram:

Y
g //

ι0
��

E

p

��
Y × I h //

H

;;

B

Then the continuous map p : E → B is called a fibration.

2. A map ι : A→ X has the homotopy extension property, if for any space Y and any map
g : X → Y and h : A× [0, 1]→ Y a homotopy such that h|A×{0} = g ◦ ι, then there is an
extension of h to H : X × [0, 1]→ Y , compatible with g and h.

As a diagram:

Y X
goo

H

{{
C(I, Y )

p0

OO

A

ι

OO

h
oo

(Note that by adjunction (∗) a map A → C(I, Y ) amounts to a homotopy A× I → Y .)
Then ι : A→ X is called a cofibration.

The property in Proposition 1.11.18 implies that any subcomplex of a CW complex has the
homotopy extension property. Indeed, two maps

g : X → Y and h : A× [0, 1]→ Y

such that h|A×{0} = g can be combined to a single map

g̃ : X × {0} ∪ A× [0, 1]→ Y ;

a retraction r : X × [0, 1] → X × {0} ∪ A × [0, 1] provides the homotopy extension g̃ ◦ r :
X × I → Y .

In the following we collect some facts about the topology of CW complexes that we do not
prove:
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Lemma 1.11.20.

1. For any subcomplex A ⊂ X, there is an open neighborhood U of A in X together with
a strong deformation retract to A. In particular, for each skeleton Xn there is an open
neighborhood U in X (and as well in Xn+1) of Xn such that Xn is a strong deformation
retract of U .

2. Every CW complex is paracompact, locally path-connected and locally contractible. (A
topological space X is paracompact, if every open cover has a locally finite open refine-
ment.)

3. Every CW complex is semi-locally 1-connected, hence possesses a universal covering space
which has a natural structure of a CW complex.

Lemma 1.11.21.
For the skeleta of a CW complex X, the following homeomorphisms hold:

1.
Xn \Xn−1 =

⊔
σ an n-cell

σ ∼=
⊔

σ an n-cell

D̊n.

2.
Xn/Xn−1 ∼=

∨
σ an n-cell

Sn.

Proof.
The first claim follows directly from the definition of a CW complex. For the second claim
note that the characteristic maps send the boundary ∂Dn to the (n − 1)-skeleton and hence
for every n-cell in X we get a copy of Sn in the quotient Xn/Xn−1. �

Example 1.11.22.
Consider the two-dimensional CW complex given by the hollow cube W 2. Then W 2/W 1 ∼=∨6
i=1 S2, a bouquet of 6 two-dimensional spheres.

1.12 Cellular homology

In the following, X will always be a CW complex.

Lemma 1.12.1.
For the relative homology of the skeleta, we have Hq(X

n, Xn−1) = 0 for all q 6= n > 1.

Proof.
Using the identification of relative homology and reduced homology of the quotient gives

Hq(X
n, Xn−1) ∼= H̃q(X

n/Xn−1) ∼=
⊕

σ an n-cell

H̃q(Sn).

The first isomorphism uses Lemma 1.11.20.1 and Proposition 1.9.8. The last isomorphism uses
Lemma 1.11.21.2 and Proposition 1.9.7. �

Lemma 1.12.2.
Consider the inclusion in : Xn → X of the n-skeleton Xn into X.
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1. The induced map Hn(in) : Hn(Xn)→ Hn(X) is surjective.

2. On the (n+ 1)-skeleton we get an isomorphism

Hn(in+1) : Hn(Xn+1) ∼= Hn(X).

Proof.

• Using the inclusion of skeleta, we can factor in : Xn → X as

Xn in //

α1

��

X

Xn+1

in+1

33

α2

// Xn+2
in+2

55

α3

// Xn+3
in+3

;;

α4

// . . .

The map Hn(α1) : Hn(Xn)→ Hn(Xn+1) is surjective, because Lemma 1.12.1 asserts that
Hn(Xn+1, Xn) = 0. For i > 1 we have the following piece of the long exact sequence of
the pair (Xn+i, Xn+i−1)

0 ∼= Hn+1(Xn+i, Xn+i−1) //Hn(Xn+i−1)
Hn(αi) //Hn(Xn+i) //Hn(Xn+i, Xn+i−1) ∼= 0.

Therefore Hn(αi) is an isomorphism in this range. If the complex X is finite-dimensional,
this already proves both claims.

• To deal with the general case, observe that every singular simplex in X, as the continuous
image of the compact standard simplex, has compact image which, by Corollary 1.11.17
is contained in one of the skeleta Xn. Let a ∈ Sn(X) be a chain, a =

∑m
i=1 λiβi. Then

we can find an M such that the images of all the βi’s are contained in the skeleton XM ,
say for M = n + q. Therefore [a] ∈ Hn(X) can be written as Hn(iM)[b], for some class
[b] ∈ Hn(XM).

Now αq ◦ . . . ◦ α1 induces a surjective map in homology, hence [b] can be written as
Hn(αq) ◦ . . . ◦Hn(α1)[c] for some [c] ∈ Hn(Xn). This implies

[a] = Hn(iM) ◦Hn(αq) ◦ . . . ◦Hn(α1)[c] = Hn(in)[c]

thus Hn(in) is surjective, showing the first assertion.

• Since Hn(in) = Hn(in+1) ◦Hn(α1) and Hn(in) is surjective by the preceding assertion, it
is clear that Hn(in+1) is surjective as well.

Suppose that Hn(in+1)[a] = 0 for some n-chain a. Then there exists an n+1-chain β such
that Sn(in+1a) = ∂b. Using the same argument, there exists M = n + q such that β can
be defined in terms of the M -skeleton. Thus Sn(αn+q−1) ◦ . . . ◦Sn(αn+1)(a) = ∂b and thus
Hn(αn+q−1) ◦ . . . ◦Hn(αn+1)([a]) = 0. But all maps are isomorphisms, thus [a] = 0.

�

Corollary 1.12.3.
For CW complexes X, Y we have

1. If the n-skeleta Xn and Y n are homeomorphic, then Hq(X) ∼= Hq(Y ), for all q < n.
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2. If X has no q-cells, then Hq(X) ∼= 0.

3. In particular, if q exceeds the dimension of X, then Hq(X) ∼= 0.

Proof.

1. The first claim is a direct consequence of Lemma 1.12.2 which asserts that Hn(Xn+1) ∼=
Hn(X).

2. By assumption in 2. Xq−1 = Xq, therefore we have Hq(X
q−1) ∼= Hq(X

q) and the latter
surjects by Lemma 1.12.2.2 onto Hq(X). Hence 2. is reduced to the statement in 3, applied
to Xq−1.

3. We show that Hn(Xr) ∼= 0 for n > r. Consider the long exact sequence o relative homology

→ Hn+1(X i, X i−1)→ Hn(X i−1)→ Hn(X i)→ Hn(X i, X i−1)→ . . .

For i < n, the the adjacent relative groups Hn(X i, X i−1) are trivial by Lemma 1.12.1. In
this way, we get a chain of isomorphisms

Hn(Xr) ∼= Hn(Xr−1) ∼= . . . ∼= Hn(X0) .

�

Observation 1.12.4.

1. Let X be a CW complex. Note that by the proof of Lemma 1.12.1

Cn(X) := Hn(Xn, Xn−1) ∼=
⊕

σ an n-cell

H̃n(Sn) ∼=
⊕

σ an n-cell

Z

is a free abelian group. For n < 0, we let Cn(X) be trivial.

2. If X has only finitely many n-cells, then the abelian group Cn(X) is finitely generated.

If X is a finite CW complex, then C∗(X) is finitely generated as a chain complex, i.e.
Cn(X) is only non-trivial in finitely many degrees n, and in these degrees, Cn(X) is finitely
generated.

3. Consider the map

d : Hn(Xn, Xn−1) δ //Hn−1(Xn−1)
% //Hn−1(Xn−1, Xn−2)

where δ is the connecting morphism in the long exact sequence in relative homology from
Theorem 1.6.5 for the pair Xn−1 ⊂ Xn and % is the map induced by the projection map
Sn−1(Xn−1)→ Sn−1(Xn−1, Xn−2).

The map d is a boundary operator: the composition d2 is % ◦ δ ◦ % ◦ δ, but

δ ◦ % : Hn−1(Xn−1)
ρ→ Hn−1(Xn−1, Xn−2)

δ→ Hn−2(Xn−2)

is a composition in a long exact sequence and thus vanishes.
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Definition 1.12.5
Let X be a CW complex. The cellular chain complex C∗(X) consists of the free abelian groups
Cn(X) := Hn(Xn, Xn−1) with boundary operator

d : Hn(Xn, Xn−1) δ //Hn−1(Xn−1)
% //Hn−1(Xn−1, Xn−2)

where % is the map induced by the projection map Sn−1(Xn−1)→ Sn−1(Xn−1, Xn−2).

Theorem 1.12.6 (Comparison of cellular and singular homology).
For every CW complex X, there is an isomorphism Υ: H∗(C∗(X), d) ∼= H∗(X) relating cellular

and singular homology.

Proof.
Consider the diagram

Cn+1(X)

d

��

Hn+1(Xn+1, Xn)

λ
��

δ

))
Hn+1(X,Xn) δ′ // Hn(Xn)

Hn(in) //

%uu

Hn(X)

Cn(X)

d

��

Hn(Xn, Xn−1)

λ
��

δ

))
Hn(X,Xn−1) δ′ // Hn−1(Xn−1)

Hn−1(in−1) //

%uu

Hn−1(X)

Cn−1(X)

d

��

Hn−1(Xn−1, Xn−2)

λ
��

δ

))
Hn−1(X,Xn−1) δ′ // Hn−2(Xn−2)

Hn−2(in−2) //

%
tt

Hn−2(X)

. . . . . .

1. The fact that Hk(X
k−1) ∼= 0 for all k by Corollary 1.12.3, combined with the long exact

sequence
0 = Hn−1(Xn−2)→ Hn−1(Xn−1)

ρ→ Hn−1(Xn−1, Xn−2)

implies that all occurring %-maps are injective.

2. For every a ∈ Hn(Xn) the element %(a) ∈ Hn(Xn, Xn−1) = Cn(X) is a cycle for d:

d%(a) = %δ%(a) = 0 ,

since δ ◦ % = 0, cf. 1.12.4.3.

3. Conversely, let c ∈ Cn(X) be a d-cycle, thus 0 = dc = %δc. As % is injective by 1.,
we obtain δc = 0. Exactness of the long exact sequence yields that c = %(a) for some
a ∈ Hn(Xn). Hence, % induces an isomorphism

Hn(Xn) ∼= ker(d : Cn(X)→ Cn−1(X)) .

We have thus expressed the cycles of the cellular complex in terms of the simplical ho-
mology group Hn(Xn).
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4. We define Υ̃ : ker(d) → Hn(X) as Υ̃[c] = Hn(in)(a) for c = %(a) with a ∈ Hn(Xn) and
Hn(in) : Hn(Xn)→ Hn(X).

5. The map Υ̃ is surjective, because Hn(in) is surjective by Lemma 1.12.2.1.

6. In the diagram, the triangles commute, i.e. δ = δ′ ◦ λ, where λ : Hn+1(Xn+1, Xn) →
H(X,Xn) comes from the triple (X,Xn+1, Xn).

7. Consider the long exact sequence for the pair (X,Xn+1):

Hn+1(Xn+1) // //Hn+1(X) //Hn+1(X,Xn+1) //Hn(Xn+1)
∼= //Hn(X) .

The surjectivity of the first morphism is Lemma 1.12.2.1. The last morphism is an
isomorphism by Lemma 1.12.2.2. The second morphism is zero, hence the morphism
Hn+1(X,Xn+1) → Hn(Xn+1) is injective. Its image is the kernel of an isomorphism and
thus zero. This tells us that Hn+1(X,Xn+1) = 0.

Now consider the triple (X,Xn+1, Xn) which by Proposition 1.6.11 yields the exact se-
quence

Hn+1(Xn+1, Xn)→ Hn+1(X,Xn)→ Hn+1(X,Xn+1) = 0

which implies that λ : Hn+1(Xn+1, Xn)→ Hn+1(X,Xn) is surjective.

8. Using this we obtain

im(δ)
7.
= im(δ′)

les
= ker(Hn(in)) ,

where ‘les’ indicates that we used the long exact sequence. As d = %◦ δ, the injective map
% induces an isomorphism between the image of d and the image of δ. Thus

imd ∼= imδ = kerHn(in) .

9. Taking all facts into account we get that % induces an isomorphism

ker(d : Cn(X)→ Cn−1(X))

im(d : Cn+1(X)→ Cn(X))
∼=

Hn(Xn)

ker(Hn(in))

The numerator is 3., the denominator is 8. and the injectivity of %, cf. 1. But for any n,
the sequence

0 //kerHn(in) //Hn(Xn) // im(Hn(in)) //0

is exact and therefore

Hn(Xn)/ker(Hn(in)) ∼= imHn(in) ∼= Hn(X) ,

where the last isomorphism comes from the surjectivity in Lemma 1.12.2.1.

�

The differential of the cellular complex is very explicitly computable as well:

Proposition 1.12.7 (Cellular Boundary Formula).
Let X be a CW complex. Identify by Observation 1.12.4.1 cells σnα with the generators of the
cellular chain group Cn(X). Denote by dαβ ∈ Z the degree of the map

∆αβ : Sn−1
α → Xn−1 → Sn−1

β
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that is the composition of the attaching map of the n-cell σαn with the quotient map collapsing
the complement Xn−1 \σn−1

β of a given (n− 1)-cell σn−1
β to a point. Then the differential of the

cellular chain complex is

d(σnα) =
∑
β

dαβσ
n−1
β .

(This is a finite sum, since the attaching map of σnα has compact image and thus only meets
finitely many cells σn−1

β .)

Proof.
Consider the commuting diagram:

Hn(Dnα, ∂Dnα)
δ∼= //

Φα∗
��

H̃n−1(∂Dnα)
∆αβ∗ //

φα∗
��

H̃n−1(Sn−1
β )

Hn(Xn, Xn−1) δ //

d ))

H̃n−1(Xn−1)

ρ

��

q∗ // H̃n−1(Xn−1/Xn−2)

∼=uu

qβ∗

OO

Hn−1(Xn−1, Xn−2)

where

• Φα : Dn → Xn is the characteristic map for the cell σnα and φα : ∂Dnα → Xn−1 the
attaching map.

• q : Xn−1 → Xn−1/Xn−2 is the quotient map.

• qβ : Xn−1/Xn−2 → Sn−1
β collapses the complement Xn−1 \σn−1

β of the cell σn−1
β to a point.

The resulting quotient sphere is identified with Dn−1
β /∂Dn−1

β via the characteristic map
Φβ.

• Finally, ∆αβ := qβ ◦ q ◦ φα is defined as the composition of the attaching map φα of the
cell σnα, following by collapsing the complement of σn−1

β in Xn−1.

The characteristic map Φα∗ takes a fundamental class µn ∈ Hn(Dnα, ∂Dnα), cf. comments
before Proposition 1.10.2, to a generator enα of the summand in Hn(Xn, Xn−1) corresponding to
the cell σnα. The commutativity of the left part of the diagram implies that d(enα) = ρφα∗δµn =
ρ ◦ φα∗(µn−1).

In terms of the canonical basis of Hn−1(Xn−1, Xn−2), the map qβ∗ is the projection on the
Z-summand corresponding to σn−1

β . The commutativity of the diagram now shows the claim.
�

Examples 1.12.8 (Projective Spaces).
Let K be R,C or H; set m := dimRK. The multiplicative group K∗ := K \ {0} acts on the
vector space Kn+1 via scalar multiplication,

K∗ ×Kn+1 \ {0} → Kn+1 \ {0}, (λ, v) 7→ λv.

We define KP n = (Kn+1 \{0})/K∗ and we denote the equivalence class of (x0, . . . , xn) in KP n

by [x0 : . . . : xn]. The n + 1-tuple (x0, . . . , xn) is called the homogeneous coordinates of the
point [x0 : . . . : xn] ∈ KP n.
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We define subsets for 0 6 i 6 n

Xi := {[x0 : . . . : xn]|xi 6= 0, xi+1 = . . . = xn = 0} ⊂ KP n

and consider the map

ξi : Xi → Ki, ξi[x0 : . . . : xn] = (
x0

xi
, . . . ,

xi−1

xi
).

The map ξi is a homeomorphism; thus Xi is a cell of KP n of real dimension idimR(K) = im.
We can write KP n as X0 t . . . tXn and we have characteristic maps Φi : Dmi → KP n as

Φi(y) = Φi(y0, . . . , yi−1) = [y0 : . . . : yi−1 : 1− ||y|| : 0 : . . . : 0]

with Xi = Φi(D̊mi). This defines a structure of a CW complex on KP n.

1. First, consider the case K = C. Here, we have a cell in each even dimension 0, 2, 4, . . . , 2n
for CP n. Therefore the cellular chain complex is

Ck(CP n) =

{
Z k = 2i, 0 6 i 6 n,

0 k = 2i− 1 or k > 2n.

The boundary operator is zero in each degree and thus

H∗(CP n) =

{
Z, ∗ = 2i, 0 6 ∗ 6 2n,

0, otherwise.

2. The case of the quaternions, K = H, is similar. Here the cells are in degrees congruent to
zero modulo four, thus

H∗(HP n) =

{
Z, ∗ = 4i, 0 6 ∗ 6 4n,

0, otherwise.

3. Non-trivial boundary operators occur in the case of real projective space, RP n. Here, we
have a cell in each dimension up to n and thus the homology of RP n is the homology of
the chain complex

0→ Cn ∼= Z d→ Cn−1
∼= Z d→ . . .

d→ C0
∼= Z.

We first consider the case of RP 2, which we write as a CW-complex with one 0-,1- and
2-cell. The 1-cell is attached to the 0-cell to form a circle. Thus d[a] = 0. The 2-cell, a
disc, is attached to the circle using a map of degree ±2, where the sign is undetermined,
since we did not fix orientations.

Thus the complex becomes

0→ Z ±2→ Z 0→ Z→ 0

and we read off the homology groups we computed in Example 1.9.6.1:

H0(RP 2) = Z, H1(RP 2) = Z/2Z and H2(RP 2) = 0 .
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4. In general, X = RP n has, for 0 6 k 6 n the k-skeleton Xk = RP k. The attaching map
of the single k-cell is

φ : ∂Dk ∼= Sk−1 → RP k−1 = Sk−1/A ,

where A is the antipodal map. We have to compute the degree of the composition

Sk−1 φ //

φ̄k ((

Sk−1/± id = RP k−1

π
��

RP k−1/RP k−2 ∼= Sk−1

By construction φ̄k ◦ A = φ̄k, with A the antipodal map, and thus

deg(φ̄k) = deg(φ̄k ◦ A) = (−1)kdeg(φ̄k)

and hence the degree of φ̄k is trivial for odd k. The complement Sk−1 \ Sk−2 has two
components X+, X− and A exchanges these two components. The map φ̄k sends X+ and
X− to [X+]. Therefore the degree of φ̄k is

deg(φ̄k) = deg(F ◦ (id ∨ A) ◦ T )
1.10.4
= deg(id) + deg(A) = 1 + (−1)k.

and d is either zero or two. For the cellular complex, we find

. . .
0→ Z ·2→ Z 0→ Z→ 0 .

Thus, depending on n we get

Hk(RP n) =


Z k = 0

Z/2Z k < n, k odd

0 otherwise.

for n even.

For odd dimensions n we get

Hk(RP n) =


Z k = 0, n

Z/2Z 0 < k < n, k odd

0 otherwise.

Note that RP 1 ∼= S1 and RP 3 ∼= SO(3).

1.13 Homology with coefficients

Let G be an arbitrary abelian group.

Definition 1.13.1
The singular chain complex of a topological space X with coefficients in G, S∗(X;G), has as

elements in Sn(X;G) finite sums of the form
∑N

i=1 giαi with gi in G and αi : ∆n → X a singular
n-simplex. Addition in Sn(X;G) is given by

N∑
i=1

giαi +
N∑
i=1

hiαi =
N∑
i=1

(gi + hi)αi.
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The nth (singular) homology group of X with coefficients in G is

Hn(X;G) := Hn(S∗(X;G))

where the boundary operator ∂ : Sn(X;G)→ Sn−1(X;G) is given by

∂(
N∑
i=1

giαi) =
n∑
j=0

(−1)j(
N∑
i=1

gi(αi ◦ dj)) .

We use a similar definition for cellular homology of a CW complex X with coefficients
in G. Recall from Observation 1.12.4 that the chain groups are Cn(X) = Hn(Xn, Xn−1) ∼=⊕

σ an n-cell Z.

Definition 1.13.2
We write c ∈ Cn(X;G) as c =

∑N
i=1 giσi ∈

⊕
σ an n-cellG and let the boundary operator d̃ be

defined by d̃c =
∑N

i=1 gid(σi) where d : Cn(X)→ Cn−1(X) is the boundary in the cellular chain
complex of X defined in Observation 1.12.4.

We can transfer Theorem 1.12.6 to the case of homology with coefficients:

Hn(X;G) ∼= Hn(C∗(X;G), d̃)

for every CW complex X and therefore we denote the latter by Hn(X;G) as well.
Note that Hn(X;Z) = Hn(X) for every space X.

Example 1.13.3.
In the case X = RP 2, we see that coefficients really make a difference.

• Recall from Example 1.9.6 that for coefficients G = Z we had that H0(RP 2) ∼= Z,
H1(RP 2) ∼= Z/2Z and H2(RP 2) = 0.

• However, for coefficients G = Z/2Z the cellular chain complex looks rather different:

0 //Z/2Z 2=0 //Z/2Z 0 //Z/2Z //0

and therefore Hi(RP 2;Z/2Z) ∼= Z/2Z for 0 6 i 6 2.

• For rational coefficients, we we consider H∗(RP 2;Q). We obtain the cellular complex

0 //Q 2 //Q 0 //Q //0

But here, multiplication by 2 is an isomorphism and we get H0(RP 2;Q) = Q,
H1(RP 2;Q) = Q/2Q = 0 and H2(RP 2;Q) = 0.

1.14 Tensor products and the universal coefficient theorem

We need to clarify whether homology H∗(X,G) with coefficients in an abelian group G is
computable from singular homology H∗(X) and the group G. To see that this can indeed be
done, we need a few more algebraic facts.

Definition 1.14.1
Let A and B be abelian groups. The tensor product A ⊗ B of A and B is the quotient of the
free abelian group generated by the set A×B by the subgroup generated by
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(a) (a1 + a2, b)− (a1, b)− (a2, b),

(b) (a, b1 + b2)− (a, b1)− (a, b2)

for a1, a1, a ∈ A and b1, b2, b ∈ B.
We denote the equivalence class of (a, b) in A⊗B by a⊗ b.

Remarks 1.14.2.

1. The relations (a) and (b) imply that λ(a⊗ b) = (λa)⊗ b = a⊗ (λb) for any integer λ ∈ Z
and a ∈ A, b ∈ B.

2. Elements of the abelian group A⊗B are finite sums of equivalence classes
∑n

i=1 λiai⊗ bi.

3. The group A⊗B is generated by elements a⊗ b with a ∈ A and b ∈ B.

4. The tensor product is symmetric up to isomorphism and the isomorphism A⊗B ∼= B⊗A
is given by

n∑
i=1

λiai ⊗ bi 7→
n∑
i=1

λibi ⊗ ai.

5. The tensor product is associative up to isomorphism:

A⊗ (B ⊗ C) ∼= (A⊗B)⊗ C

for all abelian groups A,B,C.

6. For homomorphisms f : A→ A′ and g : B → B′ we get an induced homomorphism

f ⊗ g : A⊗B → A′ ⊗B′

which is given by (f ⊗ g)(a⊗ b) = f(a)⊗ g(b) on generators.

7. The tensor product has the following universal property. For abelian groups A,B,C, the
bilinear maps from A × B to any abelian group C are in bijection to linear maps from
A⊗B to C,

A×B //

⊗ %%

C

A⊗B
∃!

;;

8. We have already encountered tensor products in Section 1.13: we have group isomorphisms
for cellular and singular homology with values in an abelian group G:

Sn(X)⊗G ∼= Sn(X;G) and Cn(X)⊗G ∼= Cn(X;G) .

We collect the following properties of tensor products:

Remarks 1.14.3.

1. For every abelian group A, we have isomorphisms

A⊗ Z ∼= A ∼= Z⊗ A

with a⊗ n 7→ n.a and inverse a 7→ a⊗ 1.
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2. For every abelian group A, we have

A⊗ Z/nZ ∼= A/nA.

Here, nA = {na|a ∈ A} is a subgroup of A for any abelian group A. The isomorphism is
given by

a⊗ ī 7→ ia

where ī denotes an equivalence class of i ∈ Z in Z/nZ and īa the class of ia ∈ A in A/nA.

3. If 0 → A
α−→ B

β−→ C → 0 is a short exact sequence of abelian groups, then for an
arbitrary abelian group D, the sequence

0 //A⊗D α⊗id //B ⊗D β⊗id //C ⊗D //0

is not necessarily exact. For example, the sequence

0→ Z −→ Q −→ Q/Z→ 0

is exact, but tensoring with Z/2Z yields

0→ Z⊗ Z/2Z −→ Q⊗ Z/2Z −→ Q/Z⊗ Z/2Z→ 0

is not, because Q⊗ Z/2Z ∼= Q/2Q ∼= 0 and tensoring yields

0→ Z/2Z→ 0→ 0→ 0

which is obviously not exact.

Lemma 1.14.4.

1. For every abelian group D, (−) ⊗D is right exact, i.e. if 0 → A
α−→ B

β−→ C → 0 is a
short exact sequence, then

A⊗D α⊗id //B ⊗D β⊗id //C ⊗D //0

is exact.

2. If the exact sequence 0→ A
α−→ B

β−→ C → 0 is a split short exact sequence, then

0 //A⊗D α⊗id //B ⊗D β⊗id //C ⊗D //0

is exact for any abelian group D.

Proof.
Exercise. �

Suppose, tensoring with the abelian group D would be exact. Then, we could tensor the
exact sequence of abelian groups

0→ Bn(X)→ Zn(X)→ Hn(X)→ 0

with the abelian group G and get the isomorphism between

Hn(X;G)
def
= Hn(S∗(X)⊗G)

def
= Zn(X)⊗G/Bn(X)⊗G
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and
Hn(X)⊗G = Hn(S∗(X))⊗G .

A consequence of the failure of the functor (−) ⊗ D to be exact on the left hand side is that
this isomorphism is, in general, wrong.

Definition 1.14.5
Let A be an abelian group. A short exact sequence 0 → R −→ F −→ A → 0 with F a free
abelian group is called a free resolution of A.

Note that in the situation above R is also free abelian, because it can be identified with a
subgroup of the free abelian group F .

Example 1.14.6.
For every n > 1, the sequence 0 → Z n−→ Z −→ Z/nZ → 0 is a free resolution of the cyclic
group Z/nZ.

Proposition 1.14.7.
Every abelian group possesses a free resolution.

The resolution that we will construct in the proof is called the standard resolution of A.

Proof.
Let F be the free abelian group generated by the elements of the underlying set of A. We denote
by ya the basis element in F corresponding to a ∈ A. Define a homomorphism

p : F → A∑
a∈A λaya 7→

∑
a∈A λaa.

Here, λa ∈ Z and this integer is non-zero for only finitely many a ∈ A. By construction, p is
an epimorphism. We set R to be the kernel of p. Since R is a subgroup of a free abelian group
and thus a free abelian group as well, we obtain the desired free resolution of A. �

Definition 1.14.8
For two abelian groups A and B and for 0 → R

i−→ F −→ A → 0 the standard resolution of
A we define

Tor(A,B) := ker(i⊗ id : R⊗B → F ⊗B).

In general, i ⊗ id is not injective, thus Tor(A,B) is in general not trivial. Unfortunately,
the standard resolution constructed in Proposition 1.14.7 is typically very large. We show that
we can calculate Tor(A,B) via an arbitrary free resolution of A. To that end, we prove the
following result.

Proposition 1.14.9.

For every homomorphism f : A → B of abelian groups and for free resolutions 0 → R
i−→

F −→ A→ 0 and 0→ R′
i′−→ F ′ −→ B → 0 we have:

1. There exist homomorphisms g : F → F ′ and h : R→ R′, such that the diagram

0 // R i //

h
��

F
p //

g
��

A //

f
��

0

0 // R′
i′ // F ′

p′ // B // 0
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commutes.

If g′, h′ are other homomorphisms with this property, then there is a group homomorphism
α : F → R′ with i′ ◦ α = g − g′ and α ◦ i = h− h′.

2. For every abelian group D, the map h⊗ id : R⊗D → R′⊗D maps the kernel of i⊗ id to
the kernel of i′ ⊗ id. The restriction h ⊗ id|ker(i⊗id) is independent of the choice of g and
h. We denote this map by ϕ(f,R→ F,R′ → F ′).

3. For a homomorphism f ′ : B → C the map ϕ(f ′ ◦ f,R → F,R′′ → F ′′) is equal to the
composition ϕ(f ′, R′ → F ′, R′′ → F ′′) ◦ ϕ(f,R→ F,R′ → F ′).

Note that we can view the morphism α in 1.14.9.1 as a chain homotopy between the chain
maps g, h and g′, h′ of free chain complexes

0 // R
i //

h




h′
��

F
α

~~

//

g




g′

��

0

0 // R′
i′ // F ′ // 0

Proof.
• To show 1., let {xi} be a basis of F and choose yi ∈ F ′ such that p′(yi) = fp(xi). This

is posisble, since p′ is surjective. We define g : F → F ′ on this basis by g(xi) = yi. Thus
p′◦g(xi) = p′(yi) = fp(xi). For every r ∈ R we find p′◦g(i(r)) = f ◦p◦i(r) = 0. Therefore
g(i(r)) is contained in the kernel of p′ which is equal to the image of i′. In order to define
h we use the injectivity of i′, thus h(r) is the unique preimage of g(i(r)) under i′. This
shows the first claim in 1.

• Given h, h′ and g, g′ as in 1., we get for x ∈ F that g(x)−g′(x) is in the kernel of p′ which
is the image of i′. Define α as (i′)−1(g − g′). Then by construction i′α = g − g′ and

i′(h− h′) = (g − g′)i = i′αi .

Here, we first used that the square commutes and then the equation i′α = g− g′. As i′ is
injective, this yields the second relation h− h′ = αi.

• For 2., we consider an element z ∈ ker(i⊗ id) ⊂ R⊗D. Then

(i′ ⊗ id) ◦ (h⊗ id)(z) = (g ⊗ id) ◦ (i⊗ id)(z) = 0

and thus (h ⊗ id)(z) is in the kernel of (i′ ⊗ id). If h′ is any other map satisfying the
properties, then we find α as in 1. and compute

(h′⊗ id)(z)− (h⊗ id)(z) = ((h′− h)⊗ id)(z) = ((α ◦ i)⊗ id)(z) = (α⊗ id)(i⊗ id)(z) = 0.

• The uniqueness in 2. implies 3.

�

Corollary 1.14.10.
1. For every free resolution 0 → R′

i′−→ F ′ −→ A → 0 and any abelian group D, we get a
unique isomorphism

ϕ(idA, R
′ → F ′, R→ F ) : ker(i′ ⊗ id)→ Tor(A,D).

Thus we can calculate Tor(A,D) with every free resolution of A.
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2. Tor is functorial: if A
f→ A′ and B

g→ B′ are morphisms of abelian groups, we have
morphisms

Tor(f, g) : Tor(A,B)→ Tor(A′, B′) .

Proof.
For the second statement, note that given a free resolution 0→ R

ι→ F → A of A, the morphism

0 // R⊗B //

id⊗g
��

F ⊗B //

id⊗g
��

A⊗B //

id⊗g
��

0

0 // R⊗B′ // F ⊗B′ // A⊗B′ // 0

induces a morphism ker(ι⊗ idB)→ ker(ι⊗ idB′). �

Examples 1.14.11.
1. We compute Tor(Z/nZ, D) for any abelian group D using the free resolution 0→ Z n−→
Z −→ Z/nZ→ 0. By Definition 1.14.8 and by Corollary 1.14.10, we have

Tor(Z/nZ, D) ∼= ker(n⊗ id : Z⊗D → Z⊗D).

As Z⊗D ∼= D and as n⊗ id induces the multiplication by n, we get

Tor(Z/nZ, D) ∼= {d ∈ D|nd = 0} for all n > 1. We thus get the elements in D that are
n-torsion. For this reason, Tor is sometimes called torsion product.

2. From the first example we obtain Tor(Z/nZ,Z/mZ) ∼= Z/gcd(m,n)Z, because the n-
torsion subgroup in Z/mZ is Z/gcd(m,n)Z.

3. For A free abelian, Tor(A,D) ∼= 0 for arbitrary D. To see this, note that 0→ 0→ A
id−→

A→ 0 is a free resolution of A. The kernel is a subgroup of 0⊗D = 0 and hence trivial.

4. For two abelian groups A1, A2, D there is an isomorphism

Tor(A1 ⊕ A2, D) ∼= Tor(A1, D)⊕ Tor(A2, D).

Consider two free resolutions

0→ Ri → Fi → Ai → 0, i = 1, 2.

Their direct sum
0→ R1 ⊕R2 → F1 ⊕ F2 → A1 ⊕ A2 → 0

is a free resolution of A1 ⊕ A2 with

ker((i1 ⊕ i2)⊗ id) = ker(i1 ⊗ id)⊕ ker(i2 ⊗ id).

We extend the definition of tensor products to chain complexes of abelian groups:

Definition 1.14.12
Are (C∗, d) and (C ′∗, d

′) two chain complexes, then (C∗ ⊗ C ′∗, d⊗) is the chain complex with

(C∗ ⊗ C ′∗)n =
⊕
p+q=n

Cp ⊗ C ′q

and with d⊗(cp ⊗ c′q) = (dcp)⊗ c′q + (−1)pcp ⊗ d′c′q.
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Lemma 1.14.13.
The map d⊗ is a differential.

Proof.
The composition is

d⊗((dcp)⊗ c′q + (−1)pcp ⊗ d′c′q) = 0 + (−1)p−1(dcp)⊗ (d′c′q) + (−1)p(dcp)⊗ (d′c′q) + 0 = 0.

�

Remarks 1.14.14.
1. Let G be an abelian group, then let CG be the chain complex that is concentrated in

degree 0, i.e. with

(CG)n =

{
G, n = 0,

0, n 6= 0.

Then for every chain complex (C∗, d), the tensor product is

(C∗ ⊗ CG)n = Cn ⊗G, d⊗ = d⊗ id.

In particular, for every topological space X,

S∗(X)⊗ CG ∼= S∗(X)⊗G = S∗(X;G) .

This allows us to identify the singular chain complex with values in the abelian group
G with a tensor product of chain complexes. Similarly, for a CW complex X, we get
C∗(X;G) = C∗(X)⊗ CG for cellular homology with values in G.

2. For every pair of spaces (X,A), we therefore introduce the chain complex

S∗(X,A;G) := S∗(X,A)⊗ CG.

3. A map f : (C∗, d)→ (D∗, dD) induces a map of chain complexes

f ⊗ id : C∗ ⊗ C ′∗ → D∗ ⊗ C ′∗.

In particular, for every continuous (cellular) map we get induced maps on singular (cel-
lular) homology with coefficients.

4. Note that, in generalization of proposition 1.2.18 we have H∗(pt;G) ∼=

{
G, ∗ = 0

0, ∗ 6= 0.

Definition 1.14.15
A chain complex C∗ is called free, if the chain group Cn is a free abelian group for all n ∈ Z.

For example, the chain complexes S∗(X,A) and C∗(X) are free.

Theorem 1.14.16 (Universal coefficient theorem (algebraic version)).
Let C∗ be a free chain complex and G an abelian group, then for all n ∈ Z we have a split

short exact sequence

0→ Hn(C∗)⊗G→ Hn(C∗ ⊗G)→ Tor(Hn−1(C∗), G)→ 0 .

In particular
Hn(C∗ ⊗G) ∼= Hn(C∗)⊗G⊕ Tor(Hn−1(C∗), G).
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This theorem will be a consequence of the more general Theorem 1.14.19. Applying Theorem
1.14.16 to the singular chain complex C∗ := S∗(X) of a topological space X, cf. Remark
1.14.14.1, we obtain the following:

Theorem 1.14.17 (Universal coefficient theorem (topological version)).
For every space X, there is a split short exact sequence

0→ Hn(X)⊗G→ Hn(X;G)→ Tor(Hn−1(X), G)→ 0 .

Therefore, we get an isomorphism

Hn(X;G) ∼= Hn(X)⊗G⊕ Tor(Hn−1(X), G) .

Example 1.14.18.
For the real projective space X = RP 2, we obtain

Hn(RP 2;G) ∼= Hn(RP 2)⊗G⊕ Tor(Hn−1(RP 2), G) .

Recalling from Example 1.9.6.1 and Example 1.12.8

H0(RP 2) = Z , H1(RP 2) = Z2 and H2(RP 2) = 0

we find
H0(RP 2;G) ∼= H0(RP 2)⊗G⊕ Tor(H−1(RP 2), G) ∼= Z⊗G ∼= G,

H1(RP 2;G) ∼= H1(RP 2)⊗G⊕ Tor(H0(RP 2), G) ∼= G/2G⊕ 0 ∼= G/2G,

and
H2(RP 2;G) ∼= H2(RP 2)⊗G⊕ Tor(H1(RP 2), G) ∼= Tor(Z/2Z, G).

This reproduces the findings in example 1.13.3.

The universal coefficient theorems 1.14.16 and 1.14.17 are both corollaries of the following
more general statement.

Theorem 1.14.19 (Künneth formula).
For a free chain complex C∗ and a chain complex C ′∗ we have the following split exact sequence
for every integer n

0 //
⊕

p+q=nHp(C∗)⊗Hq(C
′
∗)

λ //Hn(C∗ ⊗ C ′∗) //
⊕

p+q=n−1 Tor(Hp(C∗), Hq(C
′
∗)) //0,

i.e.
Hn(C∗ ⊗ C ′∗) ∼=

⊕
p+q=n

Hp(C∗)⊗Hq(C
′
∗)⊕

⊕
p+q=n−1

Tor(Hp(C∗), Hq(C
′
∗)) .

The map λ :
⊕

p+q=nHp(C∗) ⊗ Hq(C
′
∗) → Hn(C∗ ⊗ C ′∗) in the theorem is given on the

(p, q)-summand by
λ([cp]⊗ [c′q]) := [cp ⊗ c′q]

for cp ∈ Cp and c′q ∈ C ′q. By the definition of the tensor product of complexes, this map is
well-defined.

Lemma 1.14.20.
For any free chain complex C∗ with trivial differential and an arbitrary chain complex, C ′∗, λ

is an isomorphism

λ :
⊕
p+q=n

Hp(C∗)⊗Hq(C
′
∗)
∼= Hn(C∗ ⊗ C ′∗).
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Proof.

• We abbreviate the subgroup of cycles in C ′q with Z ′q and the subgroup of boundaries in C ′q
with B′q and use analogous abbreviations for the complex C∗. By definition 0 → Z ′q −→
C ′q

d−→ B′q−1 → 0 is a short exact sequence. Since Zp = Cp, the group Zp is free so that
tensoring Zp ⊗ (−) is exact by Remark 1.14.11.3. Thus

0→ Zp ⊗ Z ′q −→ Zp ⊗ C ′q −→ Zp ⊗B′q−1 → 0

is a short exact sequence. This implies that Zp⊗Z ′q is the subgroup of cycles in Zp⊗C ′q =
Cp ⊗ C ′q. Summation over p+ q = n yields that the n-cycles in the complex C∗ ⊗ C ′∗ are

Zn(C∗ ⊗ C ′∗) =
⊕
p+q=n

Zp ⊗ Z ′q

and the n-boundaries are given by

Bn(C∗ ⊗ C ′∗) =
⊕
p+q=n

Zp ⊗B′q .

• The sequence
0→ B′q −→ Z ′q −→ Hq(C

′
∗)→ 0

is exact by definition. Tensoring with Zp is exact, since Zp is free. Tensoring and then
summing over p+ q = n yields the exact sequence

0→
⊕
p+q=n

Zp ⊗B′q −→
⊕
p+q=n

Zp ⊗ Z ′q −→
⊕
p+q=n

Zp ⊗Hq(C
′
∗)→ 0

The identification of Zn(C∗ ⊗ C ′∗) and Bn(C∗ ⊗ C ′∗) in the previous part of the proof
implies that the right-most term is isomorphic to the nth homology group of the complex
C∗ ⊗ C ′∗ and therefore

Hn(C∗ ⊗ C ′∗) ∼=
⊕
p+q=n

Zp ⊗Hq(C
′
∗) =

⊕
p+q=n

Hp(C∗)⊗Hq(C
′
∗).

�

Lemma 1.14.21.
Let C∗ be a chain complex of abelian groups. Then there exists a free chain complex F∗ and a
chain map ϕ : F∗ → C∗ which induces an isomorphism in homology, ϕ∗ : H(F∗)

∼→ H(C∗).

Proof.
We already know from the exercises that there exists a free chain complex F∗ whose homology
is isomorphic to the homology of C∗. Fix an isomorphism ψ∗ : H∗(F∗)→ H∗(C∗).

Consider the diagram of short exact sequences

0 // Bn(F∗) //

θn
��

Zn(F∗) //

ϕ1
n

��

Hn(F∗) //

ψn
��

0

0 // Bn(C∗) // Zn(C∗) // Hn(C∗) // 0
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where we use the fact that Zn(F∗) is free to lift ψn to a map ϕ1
n which induces by restriction a

map θn. Since Bn−1(F∗) is free, the surjection Cn(F∗)
d→ Bn−1(F∗) implies that there is a direct

sum decomposition Cn(F∗) = Zn⊕ Yn such that d|Yn : Yn
∼→ Bn−1(F∗). We use the fact that Yn

is free to lift
Yn //

ϕ2
n

��

Bn−1(F∗)

θn−1

��
Cn

dC// Bn−1(C∗)

Then
ϕ1
n ⊕ ϕ2

n : Cn(F∗) = Zn ⊕ Yn → Cn

is the chain map inducing ψ in homology.
�

Proof. of Theorem 1.14.19

• We consider again the short exact sequence 0 → Zp −→ Cp
d−→ Bp−1 → 0. Since Bp−1

is free, this sequence is split. Tensoring it with C ′q gives, by Lemma 1.14.4.2, an exact
sequence. Summing over p+ q = n gives the short exact sequence

0→
⊕
p+q=n

Zp ⊗ C ′q −→
⊕
p+q=n

Cp ⊗ C ′q −→
⊕
p+q=n

Bp−1 ⊗ C ′q → 0 (∗)

• We define two free chain complexes Z∗ and D∗ with trivial differential and chain groups

(Z∗)p = Zp and (D∗)p = Bp−1 .

Then the exact sequence (∗) can be interpreted as a short exact sequence of complexes.
This gives a long exact sequence

. . .→ Hn+1(D∗⊗C ′∗)
δn+1−→ Hn(Z∗⊗C ′∗)→ Hn(C∗⊗C ′∗)→ Hn(D∗⊗C ′∗)

δn−→ Hn−1(Z∗⊗C ′∗)→ . . .

Lemma 1.14.20 gives us a description of H∗(D∗⊗C ′∗) and H∗(Z∗⊗C ′∗) and therefore we
can consider δn+1 as a map

δn+1 :
⊕

p+q=n+1Hp(D∗)⊗Hq(C
′
∗) =

⊕
p+q=n+1 Bp−1 ⊗Hq(C

′
∗)

j⊗id−→⊕
p+q=n Zp ⊗Hq(C

′
∗) =

⊕
p+q=nHp(Z∗)⊗Hq(C

′
∗)

with j : Bp ↪→ Zp.

• We can cut the long exact sequence in homology in short exact pieces and obtain that all
sequences

0→ coker(δn+1) −→ Hn(C∗ ⊗ C ′∗) −→ ker(δn)→ 0

are exact. The cokernel of δn+1 is isomorphic to
⊕

p+q=n(Zp/Bp) ⊗ Hq(C
′
∗) because the

tensor functor is right exact, thus

coker(δn+1) ∼=
⊕
p+q=n

Hp(C∗)⊗Hq(C
′
∗).
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As 0 → Bp −→ Zp −→ Hp(C∗) → 0 is a free resolution of the homology group Hp(C∗),
we obtain that

Tor(Hp(C∗), Hq(C
′
∗))
∼= ker(j ⊗ id : Bp ⊗Hq(C

′
∗)→ Zp ⊗Hq(C

′
∗))

and therefore ⊕
p+q=n−1

Tor(Hp(C∗), Hq(C
′
∗))
∼= ker(δn)

which proves the exactness of the Künneth sequence.

• We will first prove that the Künneth sequence is split in the case where both chain
complexes, C∗ and C ′∗, are free. In that case the sequences

0→ Zp → Cp → Bp−1 → 0, 0→ Z ′q → C ′q → B′q−1 → 0

are split and we chose retractions r : Cp → Zp and r′ : C ′q → Z ′q. Consider the two com-
positions

r̃ : Cp −→ Zp � Hp(C∗), r̃′ : C ′q−→Z ′q � Hq(C
′
∗)

and view H∗(C∗) and H∗(C
′
∗) as chain complexes with trivial differential. Then these

compositions yield a chain map

C∗ ⊗ C ′∗
r̃⊗r̃′−→ H∗(C∗)⊗H∗(C ′∗)

which on homology is

Hn(C∗ ⊗ C ′∗) −→ Hn(H∗(C∗)⊗H∗(C ′∗)) =
⊕
p+q=n

Hp(C∗)⊗Hq(C
′
∗).

This map gives the desired splitting.

If the complex C ′∗ is not free, chose by the preceding lemma a free chain complex F ′∗,
together with a chain maps

ψ′ : F ′ → C ′

inducing isomorphism in homology. The naturality of the Künneth exact sequence gives
a commutative diagram

0 //
⊕

p+q=nHp(C∗)⊗Hq(F
′
∗)

λ //

id∗⊗ψ′∗
��

Hn(C∗ ⊗ F ′∗) //

(id⊗ψ′)∗
��

⊕
p+q=n−1 Tor(Hp(C∗), Hq(F

′
∗))

Tor(id∗,ψ′∗)

��

//0,

0 //
⊕

p+q=nHp(C∗)⊗Hq(C
′
∗)

λ //Hn(C∗ ⊗ C ′∗) //
⊕

p+q=n−1 Tor(Hp(C∗), Hq(C
′
∗)) //0,

Since id∗ and ψ′∗ are isomorphisms, so are id∗ ⊗ ψ′∗ and Tor(id∗, ψ
′
∗). Thus (id ⊗ ψ′)∗ is

an isomorphism and the two exact sequences are isomorphic. Hence both are split.

�

In the cases we are interested in (singular or cellular chains), the complexes will be free.
The splitting of the Künneth sequence is not natural. We have chosen a splitting of the short
exact sequences in the proof and usually, there is no canonical choice.
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1.15 The topological Künneth formula

Let X and Y be topological spaces. The Künneth sequence for the singular chain complexes
C∗ = S∗(X) and C ′∗ = S∗(Y ) of two topological spaces states that

0→
⊕
p+q=n

Hp(X)⊗Hq(Y ) −→ Hn(S∗(X)⊗ S∗(Y )) −→
⊕

p+q=n−1

Tor(Hp(X), Hq(Y ))→ 0

is exact. We will give a geometric meaning to the group Hn(S∗(X)⊗ S∗(Y )) by showing that
it is actually isomorphic to Hn(X × Y ).

Lemma 1.15.1.
There is a homomorphism of chain complexes × : Sp(X) ⊗ Sq(Y ) −→ Sp+q(X × Y ) for all
p, q > 0 with the following properties.

1. For all points x0 ∈ X, viewed as zero chains, and for any singular q-simplex β : ∆q → Y
on Y , the product is the following q-simplex on X × Y :

(x0 × β)(t0, . . . , tq) = (x0, β(t0, . . . , tq))

Analogously, for all y0 ∈ Y and any singular p-simplex α : ∆p → X on X, we require

(α× y0)(t0, . . . , tp) = (α(t0, . . . , tp), y0) ∈ X × Y .

2. The map × is natural in X and Y : for f : X → X ′ and g : Y → Y ′

Sp+q(f, g) ◦ (α× β) = (Sp(f) ◦ α)× (Sq(g) ◦ β).

3. The Leibniz rule holds:

∂(α× β) = ∂(α)× β + (−1)pα× ∂(β).

The map × is called the homology cross product.

Proof.
For p or q equal to zero, we define × as dictated by property (1). Therefore we can assume that
p, q > 1. The method of proof that we will apply here is called method of acyclic models.

• Consider first the specific topological spaces X = ∆p, Y = ∆q with the specific simplices
α = id∆p , and β = id∆q . If the homology cross product id∆p× id∆q of these simplices were
already defined, then property (3), the Leibniz rule, would force

∂(id∆p × id∆q) = ∂(id∆p)× id∆q + (−1)pid∆p × ∂(id∆q) =: R ∈ Sp+q−1(∆p ×∆q).

For the boundary of this element R, we get

∂R = ∂2(id∆p)×id∆q+(−1)p−1∂(id∆p)×∂(id∆q)+(−1)p∂(id∆p)×∂(id∆q)+(−1)2p−1id∆p×∂2(id∆q) = 0

so R is a cycle. But Hp+q−1(∆p×∆q) = 0 because p+ q−1 > 1 and the space ∆p×∆q is
contractible and therefore the complex S∗(∆

p×∆q) is acyclic, i.e. all its homology except
in degree zero vanishes. Thus R has to be a boundary, so there exists c ∈ Sp+q(∆p ×∆q)
with ∂c = R.

We pick one such c and define the homology cross product as

id∆p × id∆q := c .
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• Now let X and Y be arbitrary spaces and α : ∆p → X, β : ∆q → Y arbitrary simplices.
Then Sp(α)(id∆p) = α and Sq(β)(id∆q) = β and therefore binaturality (2) dictates

α× β = Sp(α)(id∆p)× Sq(β)(id∆q) = Sp+q(α, β)(id∆p × id∆q).

By construction, this definition satisfies all desired properties.

�

Note that for spaces X, Y with trivial homology in positive degrees, the Künneth Theorem
1.14.19 yields that Hn(S∗(X)⊗ S∗(Y )) = 0 for positive n.

Lemma 1.15.2.
Suppose that C∗ and C ′∗ are two chain complexes which are trivial in negative degrees and

such that Cn is free abelian for all n and Hn(C ′∗) = 0 for all positive n. Then we have

1. Any two chain maps f∗, g∗ : C∗ → C ′∗ which agree in degree zero, f0 = g0, are chain
homotopic.

2. If f0 : C0 → C ′0 is a homomorphism with f0(∂C1) ⊂ ∂C ′1 then there is a chain map
f∗ : C∗ → C ′∗ extending f0.

Proof.

1. We will define a map Hn : Cn → C ′n+1 for all n > 0 with ∂Hn + Hn−1∂ = fn − gn
inductively. For n = 0 we can take H0 = 0, because f0 = g0 by assumption. Assume that
we have found Hk for k 6 n − 1. Let {xi} be a basis of the free abelian group Cn and
define

yi := fn(xi)− gn(xi)−Hn−1∂(xi) ∈ C ′n.
Then

∂yi =∂fn(xi)− ∂gn(xi)− ∂Hn−1∂(xi)

=∂fn(xi)− ∂gn(xi)−Hn−2∂
2(xi)− fn−1∂(xi) + gn−1∂(xi)

=0.

But the complex C ′∗ is acyclic by assumption. Therefore, yi has to be a boundary and we
define Hn(xi) = zi by choosing some zi such that ∂zi = yi. Using this definition of Hn(xi)
and then the definition of yi, we find

(∂Hn +Hn−1∂)(xi) = yi +Hn−1∂(xi) = fn(xi)− gn(xi).

2. To show the second assertion, we define fn : Cn → C ′n inductively such that ∂fn = fn−1∂
holds. Assume that {xi} is a basis of Cn. Then fn−1∂(xi) is a cycle and thus there exists
yi with ∂yi = fn−1∂(xi), due to the acyclicity of C ′∗. We define fn(xi) := yi. Then

∂fn(xi) = ∂yi = fn−1∂(xi)

so that (fn) is a chain map.

�

We next have to show a uniqueness statement for the chain map constructed in Lemma
1.15.1.
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Proposition 1.15.3.
Any two binatural families of chain maps fX,Y , gX,Y from S∗(X)⊗ S∗(Y ) to S∗(X × Y ) which
agree in degree zero and send the zero chain x0 ⊗ y0 ∈ (S∗(X)⊗ S∗(Y ))0 = S0(X)⊗ S0(Y ) to
(x0, y0) ∈ S0(X × Y ) are chain homotopic.

Proof.

• First we deal with the case X = ∆p and Y = ∆q for p, q > 0. If f, g : S∗(∆
p)⊗S∗(∆q) −→

S∗(∆
p×∆q) are two chain maps then the complex S∗(∆

p)⊗S∗(∆q) is free abelian and the
complex S∗(∆

p×∆q) is acyclic, so we can apply Lemma 1.15.2 and get a chain homotopy
(Hn)n,

Hn : (S∗(∆
p)⊗ S∗(∆q))n −→ Sn+1(∆p ×∆q)

with ∂Hn +Hn−1∂ = fn − gn.

• Note that for arbitrary topological spaces X and Y binaturality of f and g implies

fX,Y ◦(S∗(α)⊗S∗(β)) = S∗(α, β)◦f∆p,∆q and gX,Y ◦(S∗(α)⊗S∗(β)) = S∗(α, β)◦g∆p,∆q

for all singular simplices α : ∆p → X, β : ∆q → Y .

We define

Hn : (S∗(X)⊗ S∗(Y ))n → Sn+1(X × Y )

α⊗ β 7→ Sn+1(α, β) ◦Hn(id∆p ⊗ id∆q).

This is well-defined and by construction:

∂Hn(α⊗ β) = ∂Sn+1(α, β) ◦Hn(id∆p ⊗ id∆q) [Definition]

= Sn(α, β)∂Hn(id∆p ⊗ id∆q) [S∗(α, β) is a chain map]

= Sn(α, β) ◦ (−Hn−1∂(id∆p ⊗ id∆q) + fn(id∆p ⊗ id∆q)− gn(id∆p ⊗ id∆q))

= fn(α⊗ β)− gn(α⊗ β)−Hn−1∂(α⊗ β).

For the last step, observe that

∂i(α) = α ◦ di = Sp(α)(id∆p ◦ di)

implies ∂α = Sp(α)(id∆p ◦ ∂) and thus

Sn(α, β) ◦Hn−1∂(id∆p ⊗ id∆q) = Sn(α, β) ◦Hn−1 (id∆p ◦ ∂ ⊗ id∆q + (−1)pid∆p ⊗ id∆q ◦ ∂)
= Hn−1(α⊗ β) ◦ (∂ ⊗ id + (−1)pid⊗ ∂)
= Hn−1∂(α⊗ β)

where we used the definition of the differential and the definition of Hn−1.

�

We finally need to ensure the existence of a homotopy inverse.

Proposition 1.15.4.

1. There is a chain map S∗(X × Y ) −→ S∗(X) ⊗ S∗(Y ) for all spaces X and Y such that
this map is natural in X and Y and such that in degree zero this map sends (x0, y0) to
x0 ⊗ y0 for all x0 ∈ X and y0 ∈ Y .

75



2. Any two such maps are chain homotopic.

Proof.

• For the first assertion, let X = ∆n = Y for n > 0 and set C∗ = S∗(∆
n × ∆n) and

C ′∗ = S∗(∆
n) ⊗ S∗(∆n). Set f0 : C0 → C ′0 as dictated by the condition. Then by Lemma

1.15.2 there is a chain map (fm)m, fm : Sm(∆n × ∆n) → (S∗(∆
n) ⊗ S∗(∆

n))m. For a
singular simplex α : ∆n → X × Y , we define

f̃n(α) := (S∗(p1 ◦ α))⊗ S∗((p2 ◦ α)) ◦ fn(∆∆n).

Here, ∆∆n : ∆n −→ ∆n ×∆n is the diagonal map viewed as a singular n-simplex ∆∆n ∈
Sn(∆n ×∆n) and the pi are the projection maps X

p1←− X × Y p2−→ Y :

Sn(∆n ×∆n)
fn // (S∗(∆

n)⊗ S∗(∆n))n

S∗(α)⊗S∗(α)

��
(S∗(X × Y )⊗ S∗(X × Y ))n

S∗(p1)⊗S∗(p2)

��
(S∗(X)⊗ S∗(Y ))n.

• The second assertion follows as in the proof of Proposition 1.15.3.

�

Theorem 1.15.5 (Eilenberg-Zilber).
The homology cross product × : S∗(X)⊗ S∗(Y ) −→ S∗(X × Y ) is a homotopy equivalence of

chain complexes.

Proof.
Let f be any natural chain map S∗(X × Y ) → S∗(X) ⊗ S∗(Y ) from Proposition 1.15.4 with
f0(x0, y0) = x0 ⊗ y0 for any pair of points. Then the composition

f ◦ (−×−) : S∗(X)⊗ S∗(Y )→ S∗(X)⊗ S∗(Y )

is a chain map that sends x0 ⊗ y0 to itself. Using Lemma 1.15.2 for X = ∆p and Y = ∆q and
then extending by binaturality again, we get that the identity and f ◦ (−×−) are homotopic.
Similarly we get that the composition (−×−) ◦ f is homotopic to the identity. �

Corollary 1.15.6 (Topological Künneth formula).
For any pair of spaces X and Y the following sequence is split short exact

0→
⊕
p+q=n

Hp(X)⊗Hq(Y ) −→ Hn(X × Y ) −→
⊕

p+q=n−1

Tor(Hp(X), Hq(Y ))→ 0.

The sequence is natural in X and Y , but the splitting is not.

Examples 1.15.7.
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1. For the n-torus T n = (S1)n we get inductively

Hi(T
n) ∼= Z(ni) ;

all Tor-groups vanish, since all homology groups are free.

2. For a space of the form X × Sn we obtain

Hq(X × Sn) ∼= Hq(X)⊕Hq−n(X).

Remarks 1.15.8.

1. There is also a relative version of the Künneth formula. The homology cross product in
its relative form is a map

× : Sp(X,A)⊗ Sq(Y,B) −→ Sp+q(X × Y,A× Y ∪X ×B)

and the corresponding relative homology appears in a topological Künneth formula.

2. In particular for A and B a point we get a reduced Künneth formula which is based on a
homology cross product

S̃p(X)⊗ S̃q(Y ) −→ Sp+q(X × Y,X ∨ Y )

and in good cases (see Proposition 1.9.8) the relevant relative homology H̃n(X×Y,X∨Y )
is isomorphic to the homology H̃p+q(X ∧Y ) of the smash product X ∧Y = X×Y/X ∨Y .

2 Singular cohomology

2.1 Definition of singular cohomology

Definition 2.1.1
A cochain complex of abelian groups is a sequence (Cn)n∈Z of abelian groups Cn together with
homomorphisms δ : Cn → Cn+1 increasing the degree such that δ2 = 0. The map δ is called
coboundary operator. The group

Hn(C∗) =
ker(δ : Cn → Cn+1)

im(δ : Cn−1 → Cn)

is the nth cohomology group of C∗.

If (C∗, d) is a chain complex, we can define Dn := C−n and this is a cochain complex because
the fact that d lowers degree by one gives a map d : C−n = Dn → C−n−1 = Dn+1 increasing the
degree. We therefore do not need a theory of cochain complexes; it is just convenient to switch
to cochain notation.

Definition 2.1.2
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For two cochain complexes (C∗, δ) and (C̃∗, δ̃) a map of cochain complexes from C∗ to C̃∗ is a

sequence of homomorphisms fn : Cn → C̃n such that fn+1 ◦ δ = δ̃ ◦ fn for all n.

Cn+1 fn+1
// C̃n+1

Cn fn //

δ

OO

C̃n.

δ̃

OO

Maps of cochain complexes induce maps on cohomology. In particular, we get for a short
exact sequence of cochain complexes a long exact sequence with functorial connecting homo-
morphisms, as a consequence of Proposition 1.5.5.

Definition 2.1.3
1. Let G be any abelian group and X a topological space. Then the abelian group

Sn(X;G) := Hom(Sn(X), G)

is called the nth cochain group of X with coefficients in G. In the special case G = Z, we
call Sn(X) := Hom(Sn(X),Z) the nth singular cochain group of X.

2. The dual δ = ∂∗ = Hom(∂, idG) of the boundary operator ∂ endows these groups with
the structure of a cochain complex.

3. The quotient group

Hn(X;G) =
ker(δ : Sn(X;G)→ Sn+1(X;G))

im(δ : Sn−1(X;G)→ Sn(X;G))

is the nth cohomology group of X with coefficients in G.

Remarks 2.1.4.
1. Explicitly, the differential on a G-valued singular n-cochain ϕ : Sn(X) → G is given by

precomposition:
δ(ϕ) : Sn+1(X) → G

α 7→ ϕ(∂α)

2. We evaluate δ2(ϕ) on a singular (n+ 2)-simplex β : ∆n+2 → X:

δ2(ϕ)(β) = (δϕ)(∂β) = ϕ(∂2β) = 0 .

Thus δ2 = 0 and we indeed have a cochain complex.

3. For a continuous map f : X → Y , denote the induced map S∗(f) of singular chains by
f∗. Then the dual map

S∗(f) = f ∗ : S∗(Y ;G)→ S∗(X;G)

is defined as usual by precomposition: for ϕ ∈ S∗(Y ;G) and α ∈ S∗(X),

f ∗(ϕ)(α) = ϕ(f∗α) ∈ G.

This is indeed a map S∗(Y ;G)→ S∗(X;G) of cochain complexes:

〈δ ◦ f ∗ϕ, α〉 = 〈f ∗ϕ, ∂α〉 = 〈ϕ, f∗∂α〉 = 〈ϕ, ∂f∗α〉 = 〈δϕ, f∗α〉 = 〈f ∗δϕ, α〉

for all chains α ∈ S∗(X) and cochains ϕ ∈ S∗(Y ;G) and where we write 〈ψ, α〉 := ψ(α).

78



4. Note that
〈(f ∗ ◦ g∗)ϕ, α〉 = 〈g∗ϕ, fα〉 = 〈ϕ, gfα〉 = 〈(g ◦ f)∗ϕ, α〉 .

Thus Sn(−;G) and Hn(−;G) are contravariant functors from the category of topological
spaces and continuous maps to the category of abelian groups.

Definition 2.1.5
1. For two abelian groups A and G, and ϕ ∈ Hom(A,G), a ∈ A the Kronecker pairing is

the G-valued evaluation

〈−,−〉 : Hom(A,G)⊗ A −→ G, 〈ϕ, a〉 = ϕ(a) ∈ G.

2. For a homomorphism f : B → A and ϕ ∈ Hom(A,G), we have f ∗(ϕ) ∈ Hom(B,G). On
b ∈ B, this takes the value

〈f ∗ϕ, b〉 = 〈ϕ, fb〉 = ϕ(f(b)) ∈ G .

3. For a chain complex C∗ of abelian groups and the cochain complex Cn := Hom(Cn, G),
we define a pairing with values in G:

〈−,−〉 : Cn ⊗ Cn → G,ϕ⊗ a 7→ 〈ϕ, a〉 = ϕ(a).

4. In particular, for A = Sn(X) a singular chain group and Sn(X,G) = Hom(Sn(X), G), we
get a Kronecker pairing with values in G

〈−,−〉 : Sn(X;G)⊗ Sn(X)→ G.

5. For ∂ : Sn+1(X)→ Sn(X) and a ∈ Sn+1(X) we get

〈δϕ, a〉 = 〈ϕ, ∂a〉 = ϕ(∂(a)).

Lemma 2.1.6.
Let C∗ be a complex of abelian groups and Cn := Hom(Cn, G) for some abelian group G.
The Kronecker pairing 〈−,−〉 : Cn ⊗ Cn → G induces a well-defined pairing on the level of
cohomology and homology, i.e. we obtain an induced map

〈−,−〉 : Hn(C∗)⊗Hn(C∗)→ G .

Proof.
Let ϕ be a cocycle, δϕ = 0. Then

〈ϕ, a+ ∂b〉 = 〈ϕ, a〉+ 〈ϕ, ∂b〉 = 〈ϕ, a〉+ 〈δϕ, b〉 = 〈ϕ, a〉.

Thus 〈ϕ,−〉 descends to homology. Assume that ϕ is a coboundary, ϕ = δψ and a is a cycle,
∂a = 0. Then we get

〈ϕ, a〉 = 〈δψ, a〉 = 〈ψ, ∂a〉 = 0.

Therefore 〈−,−〉 induces a well-defined G-valued pairing on Hn(C∗) and Hn(C∗). �

Changing perspective, this pairing induces a map

κ : Hn(C∗) −→ Hom(Hn(C∗), G)

via κ[ϕ][a] := 〈ϕ, a〉. How much of the cohomology Hn(C∗) does the map κ see, i.e. is it
surjective, does it have a kernel?
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2.2 Universal coefficient theorem for cohomology

Dual to Tor which was defined using the tensor product (−)⊗ (−), we consider a corresponding
construction for the functor Hom(−,−). Let R be a ring; for a short exact sequence of R-
modules

0→ A
α−→ B

β−→ C → 0

given an R-module G, the sequence of abelian groups

0→ Hom(C,G)
β∗−→ Hom(B,G)

α∗−→ Hom(A,G)→ 0

does not have to be exact. A problem can arise with respect to the surjectivity at the end.
As an example, consider the short exact sequence 0→ Z n·−→ Z −→ Z/nZ→ 0 for a natural

number n > 1. Then the sequence

0→ Hom(Z/nZ,Z) = 0 −→ Hom(Z,Z) ∼= Z n·−→ Hom(Z,Z) ∼= Z

is exact, but multiplication by n is not surjective, so we cannot prolong this sequence to the
right with a zero.

Definition 2.2.1
Let A and G be abelian groups. For a free resolution 0 → R

i−→ F −→ A → 0 of A, we call

Ext(A,G) the cokernel of Hom(i, G) : Hom(F,G)
ι∗→ Hom(R,G).

Remarks 2.2.2.
1. Ext comes from ’extension’, because one can describe Ext(A,G) in terms of extensions of

abelian groups.

2. As for Tor it is true that Ext(A,G) is independent of the free resolution of A.

3. Note that Ext(A,G) is covariant in G and contravariant in A: for homomorphisms f : A→
B and g : G→ H we get morphisms of abelian groups

f ∗ : Ext(B,G)→ Ext(A,G), g∗ : Ext(A,G)→ Ext(A,H).

4. For any family of abelian groups (Gi, i ∈ I)

Ext(A,
∏
i∈I

Gi) ∼=
∏
i∈I

Ext(A,Gi)

and
Ext(

⊕
i∈I

Gi, B) ∼=
∏
i∈I

Ext(Gi, B).

5. The group Ext(A,G) is trivial, if A is free abelian. In this case, chose R = 0 and

F = A. The free resolution 0 → A
∼=→ A → 0 gives Ext(A,G) = coker(Hom(A,G)

0→
Hom(0, G)) = 0.

6. We compute
Ext(Z/nZ, G) ∼= G/nG.

To this end, we use the free resolution 0 → Z ·n→ Z → Z/nZ → 0 and have to compute
the cokernel of

Hom(Z, G) → Hom(Z, G)
ϕ 7→ ϕ(n.−)

Identifying Hom(Z, G) ∼= G via ϕ 7→ ϕ(1), the right hand side is identified with ϕ(n.1) =
n.ϕ(1).

80



7. In particular, Ext(A,G) is trivial, if G is divisible, i.e. for all g ∈ G and n ∈ Z \ {0} there
exists t ∈ G with g = nt. For example this holds if G is isomorphic to one of the groups
Q, R, Q/Z, or C.

8. For natural numbers n and m

Ext(Z/nZ,Z/mZ) ∼= Z/gcd(n,m)Z.

To state the two main results of this section, we need two simple observations:

Lemma 2.2.3.
Let 0 → A

ι→ B
π→ C → 0 be a split short exact sequence of abelian groups. For any abelian

group G, the sequence

0→ Hom(C,G)
π∗→ Hom(B,G)

ι∗→ Hom(A,G)→ 0

is split exact.

Proof.
The sequence is exact at Hom(C,G) and Hom(B,G) in any case, cf. one of the next exercises.
Chose a retract r : B → A for ι, i.e. r ◦ ι = idA. Then

Hom(A,G) → Hom(B,G)
ϕ 7→ ϕ ◦ r

is a section of ι∗. �

Theorem 2.2.4 (Universal coefficient theorem for cochain complexes).
Let G be an abelian group. For every free chain complex C∗ and C∗ := Hom(C∗, G) the following
sequence is exact and splits

0→ Ext(Hn−1(C∗), G) −→ Hn(C∗)
κ−→ Hom(Hn(C∗), G)→ 0.

We specify to the singular chain complex, Cn = Sn(X) for a topological space X, which has
free chain groups.

Theorem 2.2.5 (Universal coefficient theorem for singular cohomology).
Let X be an arbitrary space. Then the sequence

0→ Ext(Hn−1(X), G) −→ Hn(X;G)
κ−→ Hom(Hn(X), G)→ 0

is split exact, with κ as defined after Lemma 2.1.6.

Proof. of Theorem 2.2.4

• Let C∗ be a free chain complex and C∗ := Hom(C∗, G). Then the sequence 0 → Zn −→
Cn

∂−→ Bn−1 → 0 is split exact, since Bn is free as a subgroup of the free group Cn and
thus a section of ∂ can be constructed. By lemma 2.2.3, the G-dual sequence

0→ Bn−1 −→ Cn −→ Zn → 0
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is short exact. It gives a short exact sequence of cochain complexes, where we view B∗

and Z∗ as cochain complexes with trivial differential. This yields a long exact sequence
on the level of cohomology groups

. . . −→ Zn−1 ∂−→ Bn−1 −→ Hn(C∗) −→ Zn ∂−→ Bn −→ . . . (∗)

Here, ∂ denotes the connecting homomorphism in the cohomological case. By the very
definition of the connecting homomorphism we get that ∂ is the dual of the inclusion
in : Bn ⊂ Zn, ∂ = i∗n:

Cn //

δ
��

Zn 3 ϕ

Bn
δ
// Cn+1

A preimage ψ ∈ Cn of ϕ ∈ Zn is any morphism ψ : Cn → G that restricts to ϕ on
the subgroup Zn of cycles. It is mapped to ψ ◦ d ∈ Cn+1. Here, only the value of ψ on
boundaries matters, we can thus replace ψ ◦ d = ϕ ◦ d. We are looking for ϕ̃ : Bn → G
such that ϕ̃ ◦ d = ϕ ◦ d. This is achieved by the restriction of ϕ to the boundaries Bn.

• We cut the long exact sequence (∗) into the short one

0→ coker(i∗n−1) −→ Hn(C∗) −→ ker(i∗n)→ 0

and hence we have to compute the kernel and the cokernel of i∗n : Hom(Zn, G) →
Hom(Bn, G).

• The exact sequence obtained from applying the left exact Hom-functor to the short exact
sequence 0→ Bn

ιn→ Zn
π→ Hn(C∗)→ 0

0→ Hom(Hn(C∗), G)
π∗−→ Hom(Zn, G)

i∗n−→ Hom(Bn, G)

tells us that the kernel of i∗n is the image of π∗ and due to the injectivity of π∗ this is
isomorphic to Hom(Hn(C∗), G).

• The sequence

0→ Bn−1
in−1−→ Zn−1 −→ Hn−1(C∗)→ 0

is a free resolution of the homology group Hn−1(C∗) and therefore the cokernel of i∗n−1 by
Definition 2.2.1 equals Ext(Hn−1(C∗), G).

�

Examples 2.2.6.
1. We know from Example 1.12.8.2 that the homology of complex porjective space CP n is

free with

Hk(CP n) ∼=

{
Z, 0 6 k 6 2n, k even,

0, otherwise.

For free groups, the Ext-groups vanish by 2.2.2.5 and thusHk(CP n) ∼= Hom(Hk(CP n),Z).
The cohomology is in this example given by the Z-dual of the homology.

2. Recall from Proposition 1.8.3 that

Hm(Sn) ∼=

{
Z m = 0, n,

0 otherwise.

for n > 1. For later use we fix a class νn ∈ Hn(Sn) with 〈νn, µn〉 = 1.
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2.3 Axiomatic description of a cohomology theory

Before we give an axiomatic description of singular cohomology, we establish some consequences
of some of the results we proved for singular homology.

Remarks 2.3.1.

1. For a chain map f : C∗ → C ′∗ (such as the barycentric subdivision) the G-dual map

f ∗ = Hom(f,G) : Hom(C ′∗, G) −→ Hom(C∗, G)

is a map of cochain complexes.

2. If (Hn : Cn → C ′n+1)n is a chain homotopy, then the G-dual

(Hn := Hom(Hn, G) : Hom(C ′n+1, G)→ Hom(Cn, G))n

is a cochain homotopy. Thus if ∂Hn +Hn−1∂ = fn − gn, then Hnδ + δHn−1 = fn − gn.

3. We have seen in Lemma 2.2.3 that for a split exact sequence 0→ B1 −→ B2 −→ B3 → 0
the dual sequence 0 → Hom(B3, G) −→ Hom(B2, G) −→ Hom(B1, G) → 0 is exact. For
instance, if A is a subspace of X, then the short exact sequence of chain complexes

0→ S∗(A) −→ S∗(X) −→ S∗(X,A)→ 0

is split. To see this, we define a retraction rn : Sn(X)→ Sn(A) on a generator α : ∆n → X
via

rn(α) =

{
α, if α(∆n) ⊂ A,

0, otherwise.

Therefore 0 → S∗(X,A) −→ S∗(X) −→ S∗(A) → 0 is a short exact sequence of cochain
complexes and gives rise to a long exact sequence in cohomology.

With the help of these facts we can show that singular cohomology satisfies the (Eilenberg-
Steenrod) axioms of a cohomology theory:

1. The assignment (X,A) 7→ Hn(X,A) is a contravariant functor from the category of pairs
of topological spaces to the category of abelian groups.

2. If f, g : (X,A) → (Y,B) are two homotopic maps of pairs of topological spaces, then
Hn(f) = Hn(g) : Hn(Y,B)→ Hn(X,A).

3. For any subspace A ⊂ X there is a natural connecting homomorphism ∂ : Hn(A) →
Hn+1(X,A) increasing the degree.

4. For any subspace A ⊂ X we get a long exact sequence

. . .
∂−→ Hn(X,A) −→ Hn(X)

Hn(i)−→ Hn(A)
∂−→ . . .

5. Excision holds, i.e. for W ⊂ W̄ ⊂ Å ⊂ A ⊂ X

Hn(i) : Hn(X,A) ∼= Hn(X \W,A \W ), for all n > 0.
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6. For the one-point space pt, we have

Hn(pt) ∼=

{
G, n = 0,

0, n 6= 0.

This is called the axiom about the coefficients or the dimension axiom.

7. Singular cohomology is additive under disjoint union:

Hn(
⊔
i∈I

Xi) ∼=
∏
i∈I

Hn(Xi).

For singular cohomology with coefficients in G we have an analogous set of axioms. There
are important so-called generalized cohomology theories like topological K-theory or cobordism
theories that satisfy all axioms but the dimension axiom. (For K-theory on a point, we get the
integers in every even degree.)

2.4 Cap product

The rough idea of the cap product is to evaluate a (relative) cochain of smaller or equal degree
on a piece of a (relative) chain to get a relative chain of smaller degree. (This is a partial
evaluation of cochains on chains.)

Definition 2.4.1
Let a : ∆n → X be a singular n-simplex on X and let 0 6 q 6 n.

• The (n−q)-dimensional front face of the singular simplex a on X is the (n−q)-dimensional
singular simplex on X

F (a) = F n−q(a) = a ◦ i : ∆n−q ↪→ ∆n a−→ X

where i is the inclusion i : ∆n−q ↪→ ∆n with i(ej) = ej for 0 6 j 6 n− q.

• The q-dimensional back or rear face of of the singular simplex a is the q-simplex

R(a) = Rq(a) = a ◦ r : ∆q ↪→ ∆n a−→ X

where r : ∆q ↪→ ∆n is the inclusion with r(e0) = en−q, . . . , r(eq) = en, i.e., r(ei) = en−(q−i).

Definition 2.4.2
Let 0 6 q 6 n. Let R be an associative ring with unit. We define

∩ : Sq(X,A;R)⊗Sn(X,A;R) = Hom(Sq(X,A), R)⊗Sn(X,A)⊗R −→ Sn−q(X)⊗R = Sn−q(X;R)

as
α ∩ (a⊗ r) := F n−q(a)⊗ 〈α,Rq(a)〉 · r.

Remarks 2.4.3.
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1. The map ∩ is well-defined for relative (co-)homology for the pair (X,A): for a = a′ ∈
Sn(X,A), i.e. a = a′ + b with im(b) ⊂ A we get

α ∩ (a⊗ r) = α ∩ ((a′ + b)⊗ r) = α ∩ (a′ ⊗ r) + F (b)⊗ 〈α,R(b)〉r.

The image of R(b) is contained in A ⊂ X, but α ∈ Hom(Sq(X,A), R), thus α : Sq(X)→ R
with α|Sq(A) = 0 and 〈α,R(b)〉 = 0.

2. We can express the (n − q)-dimensional front face of a in terms of the face maps from
Definition 1.2.9 as

F n−q(a) = ∂n−q+1 ◦ . . . ◦ ∂n(a).

Similarly,
Rq(a) = ∂0 ◦ . . . ◦ ∂0(a) = ∂n−q0 a .

3. There is a more general version of the cap product. Suppose that there is a pairing of
abelian groups

G⊗G′ → G′′ ;

then we can define

∩ : Sq(X,A;G)⊗ Sn(X,A;G′)→ Sn−q(X;G′′).

Proposition 2.4.4.

1. The Leibniz formula holds for the cap product: for α ∈ Sq(X,A), we have

∂(α ∩ (a⊗ r)) = (δα) ∩ (a⊗ r) + (−1)qα ∩ (∂a⊗ r).

2. Naturality: for a map of pairs of spaces f : (X,A) → (Y,B), we have a map
f∗ : S∗(X,A)→ S∗(Y,B) of chain complexes and a map f ∗ : S∗(Y,B)→ S∗(X,A) cochain
complexes. Given a ⊗ r ∈ Sn(X,A) ⊗ R = Sn(X,A;R) and β ∈ Hom(Sq(Y,B), R), we
have

f∗(f
∗(β) ∩ (a⊗ r)) = β ∩ (f∗(a)⊗ r) .

For the proof, we suppress the tensor product with R. It just adds to notational complexity.

Proof.

1. For the first claim we calculate the left hand side:

∂(α ∩ a) = ∂(F n−q(a)⊗ 〈α,Rq(a)〉)
= ∂(F n−q(a))⊗ 〈α,Rq(a)〉

=

n−q∑
i=0

(−1)i∂i(∂n−q+1 ◦ . . . ◦ ∂n(a))⊗ 〈α, ∂n−q0 (a)〉

This has to be compared to the two terms on the right hand side:

(δα) ∩ a = F n−q−1(a)⊗ 〈δα,Rq+1(a)〉
= F n−q−1(a)⊗ 〈α, ∂Rq+1(a)〉

2.4.3.2
=

q∑
i=0

(−1)i∂n−q ◦ . . . ◦ ∂n(a)⊗ 〈α, ∂i∂n−(q+1)
0 (a)〉.
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and, noting that ∂ja is a (n− 1)-chain

α ∩ ∂a =
n∑
j=0

(−1)jα ∩ ∂ja

=
n∑
j=0

(−1)jF n−1−q(∂ja)⊗ 〈α,Rq(∂ja)〉

=
n∑
j=0

(−1)jF n−1−q(∂ja)⊗ 〈α,R(∂j(a))〉

2.4.3.2
=

n∑
j=0

(−1)j∂n−q ◦ . . . ◦ ∂n−1 ◦ ∂ja⊗ 〈α, ∂(n−1)−q
0 ∂ja〉.

In order to get the result, use the simplicial relations ∂j∂i = ∂i−1∂j for 0 6 j < i 6 n.

2. For the claim about naturality, we note that f∗R = Rf∗ and f∗F = Ff∗ and plug in the
definitions to obtain

f∗(f
∗(β) ∩ a) = f∗(F (a)⊗ 〈f ∗β,R(a)〉)

= f∗(F (a)⊗ 〈β, f∗R(a)〉)
= F (f∗(a))⊗ 〈β,R(f∗(a))〉)
= β ∩ f∗(a).

�

Remark 2.4.5.
From the Leibniz formula, we conclude the following properties of the cap product:

• A cocycle cap a cycle is a cycle.
Indeed, for a cycle c with ∂c = 0 and for a q-cocycle e with δe = 0, we find

∂(e ∩ c) = (δe) ∩ c+ (−1)qe ∩ (∂c) = 0 .

• A cocycle cap a boundary is a boundary.
Indeed, for a q-cocycle e with δe = 0 and a boundary b = ∂c, we find from the Leibniz
rule

∂(e ∩ (−1)qc) = (δe) ∩ (−1)qc+ e ∩ b = e ∩ b

so that the cap product e ∩ b is a boundary.

• A coboundary cap a cycle is a boundary.

Therefore we obtain the following result:

Proposition 2.4.6.
The cap product induces a map

∩ : Hq(X,A;R)⊗Hn(X,A;R) −→ Hn−q(X;R)

via
[α] ∩ [a] := [F (a)⊗ 〈α,R(a)〉]
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Examples 2.4.7.

1. Let R be a ring and consider 1 ∈ S0(X;R). This is the cochain with value 1(a) = 1 ∈ R
for all 0-simplices a : ∆0 → X. We claim that the cap product obeys 1 ∩ a = a for any
singular simplex a : ∆n → X. Indeed, we have q = 0 and thus F (a) = a. For the rear
face, we have R(a)(e0) = a(en). Therefore, 1 ∩ a = a⊗ 〈1, a(en)〉 = a⊗ 1 and we identify
the latter with the n-simplex a.

2. For a space X and a cochain α ∈ Sn(X;R) and a chain a ∈ Sn(X) of same degree, we
have q = n and thus F (a)(e0) = a(e0) ∈ X and R(a) = a. We find

α ∩ a = a(e0)⊗ 〈α, a〉 .

If X is path-connected, then [a(e0)] ∈ H0(X) ∼= Z is a generator which we identify with
1 ∈ Z. In this sense, the cap product α∩ a generalizes the Kronecker pairing of Sn(X;G)
and Sn(X) with values in G, cf. Definition 2.1.5.4.

3. There is also a version of the cap product of the form

∩ : Hq(X;R)⊗Hn(X,A;R) −→ Hn−q(X,A;R).

Remark 2.4.8.
We explain the notation ∩. We take a 2-torus T 2. Its first homology is H1(T 2) ∼= Z2 and
generated by the class of a meridian b ⊂ T 2 and of a longitude a ⊂ T 2. The second homology
H2(T 2) ∼= Z is generated by the class of the singular 2-simplex σ : ∆2 → T 2 that maps the
boundary ∂∆2 to ab(a−1b−1). We find F 1(σ) = a and R1(σ) = b.

We consider the class β ∈ H1(T 2) ∼= Hom(H1(T 2),Z) ∼= Z ⊕ Z dual to [b] ∈ H1(T 2). Then
β ∩ σ = F 1(σ)⊗ 〈β,R1(σ)〉 = a can be represented by the longitude a which is transversal to
the meridian b.

2.5 Cup product on cohomology

In the following, let R be a commutative ring with unit. We will consider homology and co-
homology with coefficients in R, but we will suppress the ring R in our notation, so Hn(X,A)
will stand for Hn(X,A;R) and similarly Sn(X,A) is Sn(X,A;R). We will use analogous ab-
breviations for cochains and cohomology. Sometimes, if we have to be explicit, we denote the
multiplication in R by µ.

We recall from Proposition 1.15.4 that an Eilenberg-Zilber map is a homotopy equivalence
of chain complexes

EZ : S∗(X × Y ;X ×B ∪ A× Y ) −→ S∗(X,A)⊗ S∗(Y,B)

We use this structure in a first step to associate to a pair, consisting of a cochain on X and of
a cochain on Y a cochain on the product X × Y :

Definition 2.5.1
For a (relative) cochain α ∈ Sp(X,A) on X and a (relative) cochain β ∈ Sq(Y,B) on Y the
cohomology cross product α × β or external cup product is the (relative) (p + q)-cochain on
X × Y

α× β := µ ◦ (α⊗ β) ◦ EZ ∈ Sp+q(X × Y,X ×B ∪ A× Y )
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Thus
Sn(X × Y ;X ×B ∪ A× Y )

EZ
��

α×β

''

⊕
p′+q′=n Sp′(X,A)⊗ Sq′(Y,B)

��
Sp(X,A)⊗ Sq(Y,B)

α⊗β
// R⊗R µ

// R

Remarks 2.5.2.

1. Since the Eilenberg-Zilber map is natural, the cohomology cross product is natural, i.e.
for maps of pairs of spaces f : (X,A)→ (X ′, A′), g : (Y,B)→ (Y ′, B′) we have

(f, g)∗(α× β) = (f ∗α)× (g∗β).

2. For the Kronecker pairing and for cohomology classes α ∈ Hp(X,A) and β ∈ Hq(Y,B)
and homology classes a ∈ Hp(X,A) and b ∈ Hq(Y,B), we have by definition of α× β

〈α× β, a× b〉 = 〈α, a〉〈β, b〉.

3. For 1 ∈ R and thus 1X ∈ S0(X,A) and 1Y ∈ S0(Y,B)

1X × β = p∗2(β), α× 1Y = p∗1(α)

where pi (i = 1, 2) denotes the projection onto the ith factor in X × Y . Indeed,

〈1× β, a× b〉 = 〈1, a〉 · 〈β, b〉 = 〈β, b〉

and
p∗2β(a, b) = β ◦ p2(a, b) = β(b) .

We next use the cohomology cross product in order to obtain a multiplication on the graded
abelian group H∗(X,G). Consider the diagonal map

∆: X → X ×X
x 7→ (x, x)

as a map of pairs
∆ : (X,A ∪B)→ (X ×X,X ×B ∪ A×X) .

Definition 2.5.3
For α ∈ Hp(X,A) and β ∈ Hq(X,B) we define the cup product of α and β as

α ∪ β = ∆∗(α× β).

Hp(X,A)⊗Hq(X,B)
× //

∪ ++

Hp+q(X ×X,X ×B ∪ A×X)

∆∗

��
Hp+q(X,A ∪B)

Conversely, we can express the cohomology cross product via the cup product:
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Proposition 2.5.4.
Let X and Y be topological spaces. Consider the projections

p1 : X × Y → X and p2 : X × Y → Y .

Let α ∈ Hp(X) and β ∈ Hq(Y ) be cohomology classes. Then the external cup product satisfies

α× β = p∗1(α) ∪ p∗2(β) ,

where the cup product is on the product space X × Y

Proof.
Since by Remark 2.5.2.3, we have p∗1(α) = α× 1Y and p∗2(β) = 1X × β, we find

p∗1(α) ∪ p∗2(β) = (α× 1Y ) ∪ (1X × β).

Here, α × 1 and 1 × β live in the cohomology of X × Y and the cup product is to be taken
on the product space X × Y . By Definition 2.5.3, the cup product is the pull-back of the cross
product by the diagonal. Here, ∆X×Y : X×Y → X×Y ×X×Y . Therefore, the above is equal
to

∆∗X×Y ((α× 1Y )× (1X × β)) = α× β.

�

In the definition of the cup product, the map

S∗(X)
∆∗→ S∗(X ×X)

EZ→ S∗(X)⊗ S∗(X)

enters. The Eilenberg-Zilber map was unique up to homotopy. We will get a simple explicit
formula of the cup product by choosing a simple morphism of complexes that is still homotopy
equivalent.

Definition 2.5.5
A diagonal approximation is a natural chain map D : S∗(X) −→ S∗(X) ⊗ S∗(X) such that
D(x) = x⊗ x for all 0-chains x ∈ S0(X).

With the method of acyclic models, cf. Section 1.15, one can prove:

Proposition 2.5.6.
Any two natural diagonal approximations are chain homotopic.

Definition 2.5.7
The Alexander-Whitney map is the diagonal approximation

AW(a) =
∑
p+q=n

F p(a)⊗Rq(a) ∈ S∗(X)⊗ S∗(X)

for a ∈ Sn(X).

Remarks 2.5.8.
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1. It is obvious that AW is a natural chain map and this map yields a cup product for
α ∈ Hp(X,A) and β ∈ Hq(X,B)

(α ∪ β)(a) = µ ◦ (α⊗ β)AW(a) = µ ◦ (α⊗ β)
∑

p′+q′=n(F p′(a)⊗Rq′(a))

= (−1)pqα(F p(a))β(Rq(a)) .

2. From the formula, we see that ∪ is associative and distributive on cochain level and not
just on the level of cohomology groups. Also a graded Leibniz rule immediately follows:
for α ∈ Hp(X) and β ∈ H∗(X), we have

δ(α ∪ β) = (δα) ∪ β + (−1)pα ∪ δβ .

It implies that the cup product is well-defined in cohomology.

3. But note that it does not give a (graded) commutative product on singular cochains.
(The cup product is homotopy commutative and in fact it is homotopy commutative up
to coherent homotopies: it is an E∞-algebra.)

Proposition 2.5.9.
Let X be a topological space and α, β, γ be cohomology classes on X. The cup product satisfies

1. Associativity:
α ∪ (β ∪ γ) = (α ∪ β) ∪ γ.

2. (Graded) commutativity:
α ∪ β = (−1)|α||β|β ∪ α.

3. Compatibility with the connecting homomorphism ∂ : H∗(A) → H∗+1(X,A) in relative
cohomology and ι : A→ X, we find for α ∈ H∗(A) and β ∈ H∗(X):

∂(α ∪ i∗β) = (∂α) ∪ β ∈ H∗(X,A).

4. Naturality: For f : X → Y and α, β ∈ H∗(Y ):

f ∗(α ∪ β) = f ∗α ∪ f ∗β.

Proof.
Associativity and distributivity have already been discussed. Naturality follows from the
naturality of the external cup product. Graded commutativity follows from an explicit chain
homotopy that is constructed in [Hatcher, Theorem 3.14]. �

Using the relation
α× β = p∗1α ∪ p∗2β

from Proposition 2.5.4 that expreses the external cup product in terms of the cup product on
the product space X × Y , we conclude:

Corollary 2.5.10.

1. The cohomology cross product is associative

α× (β × γ) = (α× β)× γ

on the level of cohomology groups.
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2. It satisfies a graded version of commutativity. The twist map τ : X × Y → Y ×X yields
on cohomology

α× β = (−1)|α||β|τ ∗(β × α).

3. The Leibniz formula holds,

δ(α× β) = (δα)× β + (−1)|α|α× (δβ).

Here, |α| denotes the degree of α.

Proposition 2.5.11.

1. For all pairs of spaces (X,A) the cohomology groups H∗(X,A;R) have a structure of a
graded commutative ring with unit 1 ∈ H0(X,A;R).

2. The graded ring H∗(X,A;R) acts on the graded group H∗(X,A;R) via the cap product

H∗(X,A;R)⊗H∗(X,A;R) 3 α⊗ a 7→ α ∩ a,

i.e. 1 ∩ a = a, (α ∪ β) ∩ a = α ∩ (β ∩ a). Thus H∗(X,A;R) is a graded module over the
graded ring H∗(X,A;R).

Examples 2.5.12.
Many cup products are trivial for degree reasons.

1. Let Sn be a sphere of dimension n > 1. We know from Example 2.2.6.2 that H0(Sn) ∼=
Z ∼= Hn(Sn) and the cohomology is trivial in all other degrees. We have 1 ∈ H0(Sn) and
νn ∈ Hn(Sn). We know that

1 ∪ νn = νn = νn ∪ 1 and 1 ∪ 1 = 1

but νn∪νn ∈ H2n(Sn) = 0 and thus vanishes. Thus, H∗(Sn) has the structure of a so-called
graded exterior algebra with one generator νn in degree n, H∗(Sn) ∼= ΛZ(νn).

2. More generally, if X is a CW complex of finite dimension, then α ∪ β = 0 for all α, β for
|α|+ |β| big enough.

3. In particular, H∗(X) often has nilpotent elements: if

αr := α ∪ . . . ∪ α︸ ︷︷ ︸
r

= 0 ,

then commutativity implies (α ∪ β)r = ±αr ∪ βr = 0 for any β ∈ H∗(X).

4. Assume that α ∈ Hp(X;R) with p odd. Then

α2 = (−1)p
2

α2 = −α2 ,

where we first used the graded commutativity 2.5.9.2. Therefore 2α2 = 0 and if R is a
field of characteristic not equal to 2 or if R is a torsionfree commutative ring, then α2 = 0.

5. Consider X = X1 ∨ X2 and assume that X1, X2 are well-pointed. Then by Proposition
1.9.7

H∗(X) ∼= H∗(X1)×H∗(X2)

as rings. For α = α1 + α2 and β = β1 + β2 with αi, βi ∈ H∗(Xi) in positive degrees, the
cup product can be shown to be

α ∪ β = (α1 + α2) ∪ (β1 + β2) = α1 ∪ β1 + α2 ∪ β2.
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6. If X can be covered like X = X1 ∪ . . . ∪ Xr with H∗(Xi) = 0 for ∗ > 1 and Xi path-
connected, then in H∗(X) all r-fold cup products of elements of positive degree vanish.
We prove the case r = 2; the general claim then follows by induction. So assume X =
X1∪X2 such that the Xi have vanishing cohomology groups in all positive degrees and let
ij : Xj ↪→ X be the inclusion of Xj into X (j = 1, 2). Then for all α ∈ H∗(X), i∗j(α) = 0.
Consider the exact sequence

H∗(X,Xj) −→ H∗(X)
i∗j−→ H∗(Xj) .

Therefore, for any α ∈ H∗(X), there exists α′ ∈ H∗(X,X1) that is mapped isomorphically
to α. Similarly, for β ∈ H∗(X) there is an β′ ∈ H∗(X,X2) that corresponds to β. The
cup product α∪β then corresponds to α′∪β′ but this is an element of H∗(X,X1∪X2) =
H∗(X,X) = 0.

7. Consider a product of spheres, X = Sn × Sm with n,m > 1. The Künneth formula and
the universal coefficient theorem imply that as an abelian group

H∗(Sn × Sm) ∼= H∗(Sn)⊗H∗(Sm).

We have four additive generators

1× 1, αn := νn × 1, βm := 1× νm and γn+m := νn × νm.

The square α2
n is trivial for degree reasons:

α2
n = (νn × 1) ∪ (νn × 1) = (νn ∪ νn)× (1 ∪ 1) = 0.

Similarly, β2
m = 0 = γ2

n+m. But the products

αn ∪ βm = νn × νm = γn+m and βm ∪ αn = (−1)mnγn+m

are non-trivial. This determines the ring structure of H∗(Sn × Sm).

8. Additively, as a graded abelian group, this is isomorphic to the cohomology ring H∗(Sn∨
Sm ∨ Sn+m), which has generators α̃n, β̃m and γ̃n+1 in degrees n,m and n+m. However,
by 5.

α̃n ∪ β̃m = (α̃n + 0) ∪ (0 + β̃m) = 0 + 0 = 0

so that the cohomology ring H∗(Sn × Sm) is not isomorphic to the cohomology ring
H∗(Sn ∨ Sm ∨ Sn+m) as a ring. Thus the graded cohomology ring is a finer invariant than
the cohomology groups.

Note that the cohomology rings of the suspensions Σ(Sn × Sm) and Σ(Sn ∨ Sm ∨ Sn+m) are
isomorphic (cf. exercise). But here, we actually have

Σ(Sn × Sm) ' Σ(Sn ∨ Sm ∨ Sn+m).

2.6 Orientability of manifolds

We now consider topological spaces with more properties.

Definition 2.6.1
A topological space X is called locally euclidean of dimension m, if every point x ∈ X has an
open neighborhood U which is homeomorphic to an open subset V ⊂ Rm.
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• A homeomorphism ϕ : M ⊃ U → V ⊂ Rm is called a chart.

• A set of charts is called atlas, if the corresponding U ⊂ X cover X.

Example 2.6.2.
Consider the line with two origins, i.e.

X = {(x, 1)|x ∈ R} ∪ {(x,−1)|x ∈ R}/ ∼, (x, 1) ∼ (x,−1) for x 6= 0.

Then X is locally euclidean, but X is not a particularly nice space. For instance, it is not
Hausdorff: one cannot separate the two origins.

Definition 2.6.3
A topological space X is an m-dimensional (topological) manifold (or m-manifold for short) if
X is a locally euclidean space of dimension m that is Hausdorff and has a countable basis for
its topology.

With this definition, topological manifolds are paracompact, i.e. every open cover has a
locally finite open refinement.

Examples 2.6.4.
1. Let U ⊂ Rm an open subset, then U is a topological manifold of dimension m.

2. The n-sphere Sn ⊂ Rn+1 is an n-manifold and Sn = (Sn \N) ∪ (Sn \ S) is an atlas of Sn.

3. The 2-dimensional torus T ∼= S1 × S1 is a 2-manifold and more generally, the surfaces Fg
are 2-manifolds. Charts can be easily given via the 4g-gon whose quotient Fg is.

4. The open Möbius strip [−1, 1] × (−1, 1)/ ∼ with (−1, t) ∼ (1,−t) for −1 < t < 1 is a
2-manifold.

Let M be a connected manifold of dimension m > 2. We denote the open charts by Uα ⊂M .
Without loss of generality we can assume that the coordinate patches are homeomorphic to
open balls in Rm:

ϕ : Uα
∼→ D̊m ⊂ Rm .

For any x ∈ M , we can find a chart ϕ : Ux
∼→ D̊m with ϕ(x) = 0. Excision for (M \ Ux) ⊂

(M \ {x}) ⊂M tells us that for all x ∈M

Hm(M,M \ {x}) ∼= Hm(Ux, Ux \ {x}) ∼= Hm(D̊m, D̊m \ {0}) ∼= Hm−1(D̊m \ {0}) ∼= Z

for m > 2. Here the chart ϕ was used for the second isomorphism. Since we have fixed in
Definition 1.8.4 a generator in Hm−1(D̊m \ {0}) = Hm−1(Sm−1), any chart provides us with a
generator in Hm(M,M \ {x}).

For a triple B ⊂ A ⊂M , there are maps of pairs

%B,A : (M,M \ A) −→ (M,M \B) .

In particular, for x ∈ U ⊂M , we get a map of pairs

%x,U : (M,M \ U)→ (M,M \ {x}) .

Definition 2.6.5
Let M be an m-manifold.
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1. A choice of generators ox ∈ Hm(M,M \ {x}) for all x ∈ M is called coherent, if for all
x ∈M there is an open neighbourhood U of x and a class oU ∈ Hm(M,M \U) such that
for all y ∈ U we have that (%y,U)∗oU = oy.

2. An m-manifold M is called orientable (with respect to homology with values in Z), if
there exists a coherent choice of generators ox ∈ Hm(M,M \ {x}).

3. If such a choice is possible, then the family (ox|x ∈M) is called an orientation of M .

In the sequel, we will write %x,U also for the map on homology, i.e. we drop the lower star
in (%x2,U)∗.

Remarks 2.6.6.

1. Assume that U is a small ball in M so that (%x,U)∗ : Hm(M,M \ U)→ Hm(M,M \ {x})
is an isomorphism for each x ∈ U . For a coherent choice of generators, we have for all
x1, x2 ∈ U the compatibility condition

ox2 = %x2,U ◦ (%x1,U)−1(ox1).

Hm(M,M \ U)
%x2,U

**

%x1,U

tt
ox1 ∈ Hm(M,M \ {x1}) Hm(M,M \ {x2}) 3 ox2

2. Given an orientation (ox|x ∈M), the family (−ox|x ∈M) is an orientation of M as well.

Example 2.6.7.

1. If M is the open Möbius strip and you pick a generator ox ∈ H2(M,M \ {x}) and you
walk once around the Möbius strip, you end up at −ox.

2. If we choose other coefficients, these problems can disappear. For instance for G = Z/2Z
there is no problem to choose coherent generators for H2(M,M \ {x};Z/2Z) ∼= Z/2Z, so
the Möbius strip is Z/2Z-orientable. In general, Z-orientability implies Zp orientability.
The converse holds for p an odd prime.

Orientability can also be considered for more general homology theories.

3. Now, we consider integral coefficients again. Suppose that the family (ox|x ∈ M) is an
orientation of M . In this case, we want to obtain a global class oM ∈ Hm(M ;Z) = Hm(M),
an orientation class, that determines the orientation in the sense that

%x,M =: %x : Hm(M)→ Hm(M,M \ {x}), %x(oM) = ox .

For example, for RP 2, we have H2(RP 2) = 0 by Example 1.9.6 and cannot have such a
class.

For questions of orientability, compact subsets play a particularly important role. We will
derive a global characterization of orientability for M compact in Theorem 2.6.11.

Definition 2.6.8
Let K ⊂ M be a compact subset of M . We call a class oK ∈ Hm(M,M \K) an orientation of
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M along K, if the collection of classes ox := (%x,K)∗(oK) for all x ∈ K constitutes a coherent
choice of generators for all x ∈ K.

Clearly, if we have a global class oM ∈ Hm(M), then we get coherent generators ox for all
x ∈M and also a class oK = (%K,M)∗(oM) as above for all compact K ⊂M .

Lemma 2.6.9.
Let M be a connected topological manifold of dimension m and assume that M is orientable.

Let K ⊂M be compact.

1. Then Hq(M,M \K) = 0 for all q > m

2. Let a ∈ Hm(M,M \K). Then a is trivial, if and only if (%x,K)∗(a) = 0 for all x ∈ K.

In particular, if M is compact, then Hq(M,M \M) = Hq(M) = 0 for q > m.
The following method of proof is a standard method in the theory of manifolds.

Proof.

1. We first show that, if the two claims hold for compact subsets A,B ⊂M and for A ∩B,
then they hold for the union A ∪B.

Consider the following part of a relative Mayer-Vietoris sequence, cf. Theorem 1.8.6:

0 = Hn+1(M,M \ (A ∩B))→ Hn(M,M \ (A ∪B))
Φ→

Hn(M,M \ A)⊕Hn(M,M \B)
Ψ→ Hn(M,M \ A ∩B)

For n > m, the leftmost zero comes from our assumption 1. on A∩B. All termsHi(M\(A∪
B)) with i > m appear between terms equalling zero, hence are zero. This shows the first
claim for A∪B. If a class α ∈ Hm(M \A∪B) has zero image in all Hm(M,M \{x}), then
its images under Φ, as restrictions, have the same property, hence are zero by assumption.

2. First, consider the special case when M = Rm and K is convex and compact in M . In
this case we can assume without loss of generality that K ⊂ D̊m. We calculate

Hq(M,M \K) = Hq(Rm,Rm \K) ∼= Hq(D̊m, D̊m \ x) = 0, for q > m.

All identifications are isomorphisms also for q = m and this gives the second claim as
well.

3. Using the statement in 1. and induction shows that claim for the case when M = Rm and
K = K1 ∪ . . . ∪Kr is a union with Ki convex and compact, as in 2.

4. Let M = Rm and let K be an arbitrary compact subset and let a ∈ Hq(M,M \K) with
q > m. Choose a chain ψ ∈ Sq(Rm) representing the class a. The boundary of ψ, ∂(ψ),
has to be of the form

∂(ψ) =
∑̀
j=1

λjτj

with finitely many (q − 1)-simplices τj : ∆q−1 → Rm \K with values in Rm \K. As the
standard simplex ∆q−1 is compact, the union of the images

⋃̀
j=1

τj(∆
q−1) ⊂ Rm \K

95



is compact as well.

Hence, there exists an open neighborhood U of the compact subset K in Rm that does
not meet the simplices: ⋃̀

j=1

τj(∆
q−1) ∩ U = ∅.

Therefore, the specific q-chain ψ on Rm also defines a cycle in S∗(Rm,Rm \ U); let a′ ∈
Hq(Rm,Rm \ U) be the corresponding class. Since the classes a and a′ are defined by the
same cycle, we have

(%K,U)∗(a
′) = a.

To get compact convex subsets as in 3., choose finitely many closed balls B1, . . . , Br ⊂ Rm
with Bi ⊂ U for all i and K ∩ Bi 6= ∅ such that K ⊂

⋃r
i=1 Bi. Consider the chain of

restriction maps

(Rm,Rm \ U)
%⋃Bi,U //(Rm,Rm \

⋃r
i=1Bi)

%K,
⋃
Bi //(Rm,Rm \K).

Define a′′ as a′′ := (%⋃Bi,U)∗(a
′). Note that (%K,⋃Bi)∗(a

′′) = a.

The closed balls Bi are convex and compact subsets of Rm and therefore by 3.

(%⋃Bi,U)∗(a
′) = 0 = a′′, for all q > m

and hence also a = 0. This shows the first claim for all compact subsets of Rm.

For the second claim, let q = m and assume that (%x,K)∗(a) = 0 for all x ∈ K. We have
to show that a is trivial. We express (%x,K)∗(a) as above as

(%x,K)∗(a) = (%x,K)∗ ◦ (%K,⋃Bi)∗(a
′′) = (%x,⋃Bi)∗(a

′′) = 0

for all x ∈ K. For every x ∈ Bj ∩ K the above composition is equal to (%x,Bj)∗ ◦
(%Bj ,

⋃
Bi)∗(a

′′), but (%x,Bj)∗ is an isomorphism and hence (%Bj ,
⋃
Bi)∗(a

′′) = 0. This im-
plies (%y,Bj)∗ ◦ (%Bj ,

⋃
Bi)∗(a

′′) = 0 for all y ∈ Bj and in addition (%y,⋃Bi)∗(a
′′) = 0 for all

y ∈
⋃
Bi. According to case 3., this implies that a′′ = 0 and therefore a = (%K,⋃Bi)∗(a

′′)
is trivial as well.

5. Now let M be an arbitrary manifold. Suppose that the compact subset K is contained in a
domain Uα of a chart, i.e. K ⊂ Uα ∼= Rm. Therefore, by excision for M \Uα ⊂M \K ⊂M

Hq(M,M \K) ∼= Hq(Uα, Uα \K) ∼= Hq(Rm,Rm \ im(K)).

As the image of K is compact in Rm, the claim follows from 4.

6. If both the manifold M and the compact subset K are arbitrary, then write K = Kα1 ∪
. . .∪Kαr and each Kαi contained in the domain Uαi of a chart. Then 5. and 1. imply the
claim.

�

Proposition 2.6.10.
Assume that M is oriented with (ox ∈ Hm(M,M \ {x} |x ∈M). Let K ⊂M be any compact

subset. Then there is a unique orientation of M along K, which is compatible with the orien-
tation of M , i.e. there is a unique class oK ∈ Hm(M,M \K) such that (%x,K)∗(oK) = ox for all
x ∈ K.
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Proof.

• First we show uniqueness. Let oK and õK be two orientations of M along K. By assump-
tion we have that

(%x,K)∗(oK)− (%x,K)∗(õK) = (%x,K)∗(oK − õK) ;

on the other hand, this equals ox − ox = 0. According to Lemma 2.6.9.2 this is only the
case if oK − õK = 0.

• In order to prove the existence of oK we first consider the case where K ⊂ Uα ∼= D̊m
and hence M \ Uα ⊂M \K. Let x ∈ K. We denote the isomorphism Hm(M,M \ Uα) ∼=
Hm(M,M \ {x}) by φx.

We define oK as
oK := (%K,Uα)∗((φ

−1
x )(ox)).

• For K = K1 ∪K2, with Ki contained in the codomain of a chart, the previous argument
ensures the existence of classes oK1 ∈ Hm(M,M \ K1) and oK2 ∈ Hm(M,M \ K2). Let
K0 = K1 ∩K2 and consider the Mayer-Vietoris sequence

0→ Hm(M,M \K)
i−→ Hm(M,M \K1)⊕Hm(M,M \K2)

κ−→ Hm(M,M \K0)→ . . .

The uniqueness of the orientation along the intersection K0 implies that

κ(oK1 , oK2) = (%K0,K1)∗(oK1)− (%K0,K2)∗(oK2) = 0.

By exactness, there is a unique class oK ∈ Hm(M,M \K) with i(oK) = (oK1 , oK2).

• For the general case we consider a compact subset K and we know that K = K1∪ . . .∪Kr

with Ki ⊂ Uαi . An induction then finishes the proof.

�

Theorem 2.6.11.
Let M be a connected and compact manifold of dimension m. The following statements are

equivalent:

1. M is orientable,

2. There is an orientation class oM ∈ Hm(M ;Z),

3. Hm(M ;Z) ∼= Z.

Proof.

• Proposition 2.6.10 yields that (1) implies (2).

• Now assume that (2) holds, thus there is a class oM ∈ Hm(M) restricting to the lo-
cal orientation classes ox. Then the class oM cannot be trivial, because its restriction
(%x,M)∗oM = ox is a generator and hence non-trivial. Furthermore, oM cannot be of finite
order: the relation koM = 0 implies kox = 0 for all x ∈ M , contradicting the property
that ox generates the free abelian group Hm(M,M \ {x}).
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Let a ∈ Hm(M) be an arbitrary element. Thus (%x,M)∗(a) = kox for some integer k. As
the ox are coherent in x, this k has to be constant on the connected manifold M . We let
b := koM − a and find (%x,M)∗b = 0 for all x. Since M is compact, Lemma 2.6.9 implies
that b = 0. Therefore a = koM , thus every element in Hm(M) is a multiple of oM and
Hm(M) ∼= Z.

• Assuming (3), there are two possible generators in Hm(M). Choose one of them and call
it oM . Then ((%x,M)∗oM |x ∈M) is an orientation of M .

�

Definition 2.6.12
Let M be a compact, connected, orientable manifold. Given an orientation on M , the class oM
as in Theorem 2.6.11 is also called fundamental class of M and is often denoted by [M ] = oM .

Example 2.6.13.
For the m-sphere, M = Sm we can choose µm ∈ Hm(Sm) as in Definition 1.8.4 as a generator.
Thus

[Sm] = oSm = µm.

In particular, spheres are orientable. It follows from Theorem 2.6.11 and Example 1.12.8 that
RP n is orientable, iff n is odd.

Remarks 2.6.14.
All results about orientations can be transferred to a setting with coefficients in a commutative
ring R with unit 1R.

1. Then M is called R-orientable if and only if there is a coherent choice of generators of
the group Hm(M,M \ x;R) ∼= R for all x ∈M .

2. Suppose M is a compact manifold. If M is not R-orientable, the map Hn(M ;R) →
Hn(M,M \ {x};R) ∼= R is injective for all x ∈ M with image {r ∈ R | 2r = 0}, cf.
Hatcher, Theorem 3.26 p. 236. In particular, for R = Z, M is not orientable, if and only
if Hn(M ;Z) = 0.

3. The results we obtained have formulations relative R: Lemma 2.6.9 goes through, and if M
has an R-orientation (oRx |x ∈M), then for all compact K ⊂M there is an R-orientation
of M along K, i.e. a class oRK ∈ Hm(M,M \K;R) that restricts to the local classes. The
R-version of Theorem 2.6.11 yields for a compact manifold M a class oRM ∈ Hm(M ;R)
restricting to the oRx . The class oRM is then called the fundamental class of M with respect
to R and is denoted by [M ;R].

Returning to integral coefficients, we know from Theorem 2.6.11 that for compact connected
orientable manifolds of the same dimension we get a copy of the integers in the homology of
the highest degree, with the fundamental class as a generator. This motivates the following
definition:

Definition 2.6.15
Let M and N be two oriented compact connected manifolds of the same dimension m > 1 and
let f : M → N be continuous. Then the degree of f is the integer deg(f) that is given by

Hm(f)[M ] = deg(f)[N ].
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Of course, this definition extends the notion of the degree of a map we introduced in Defi-
nition 1.10.1 for self-maps of spheres.

Proposition 2.6.16.
Let M,N1, N2 be oriented compact connected manifolds and let f : M → N1 and g : N1 → N2

be continuous maps.

1. The degree is multiplicative,

deg(g ◦ f) = deg(g)deg(f).

2. If M̄ is the same manifold as M but with opposite orientation, then

deg(f) = deg(f : M̄ → N̄1) = −deg(f : M̄ → N1) = −deg(f : M → N̄1).

3. If the degree of f is not trivial, then f is surjective.

Proof.
The first claim follows directly from the definition of the degree. For the second claim, note
that [M̄ ] = −[M ], because we need to have

(%x,M)∗[M̄ ] = −ox

if (ox|x ∈M) is the given orientation of M .
For (3) assume that f is not surjective, thus there is a point y ∈ N , that is not contained

in the image of M under f . Consider the composition

Hm(M)
Hm(f)//Hm(N)

(%y,N )∗ //Hm(N,N \ y).

This composition is trivial, since y 6∈ im(f). On the other hand (%y,N)∗ is an isomorphism.
Hence Hm(f) = 0 and f has trivial degree. �

2.7 Cohomology with compact support

So far, orientation theory works fine if we restrict our attention to compact manifolds. We are
aiming at Poincaré duality : if M is a compact connected oriented manifold of dimension m,
then taking the cap product with the orientation class [M ] = oM gives a map

(−) ∩ oM : Hq(M)→ Hm−q(M).

Our aim is to show that this gives an isomorphism, but we also want to extend the result to
non-compact manifolds M . To this end we start with the following:

Definition 2.7.1
Let X be an arbitrary topological space and let R be a commutative ring with unit 1R.

1. Then the singular n-cochains with compact support singular cochains with compact support
are

Snc (X;R) = {ϕ : Sn(X)→ R|∃Kϕ ⊂ X compact, ϕ(σ) = 0
for all singular simplices σ : ∆n → X with σ(∆n) ∩Kϕ = ∅.}
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2. The nth cohomology group with compact support of X with coefficients in R is

Hn
c (X;R) := Hn(S∗c (X;R)) .

Remarks 2.7.2.

1. The condition of compact support is formulated in a weak sense. One could have imagined
to restrict to cochains ϕ that are non-zero only on simplices contained in a given compact
subset Kϕ depending on ϕ. Then, however, a differential cannot be defined: if ϕ is a 0-
cochain on R assigning non-zero value only to the 0-simplex contained in x = 0, then its
differential assigns non-zero values to arbitrarily large 1-simplices, i.e. all those starting
or ending in x = 0.

2. Note that S∗c (X;R) ⊂ S∗(X;R) is a sub-complex. This inclusion of complexes induces a
map on cohomology

Hn
c (X;R) −→ Hn(X;R).

If X is compact, then obviously Hn
c (X;R) ∼= Hn(X;R) for all n.

A map from singular cohomology to singular cohomology with compact support is much
more subtle; indeed, we only get in Proposition 2.7.7 a map from a collection of relative
singular cohomologies, involving all the compact subsets of a space.

Observation 2.7.3.

1. Let K ⊂ X be compact. The map of pairs

%K,X : (X,X \X) = (X,∅) −→ (X,X \K)

induces a map of cochain complexes

%nK,X : Sn(X,X \K;R) −→ Sn(X;R) .

We claim that the image of %nK,X is contained in Snc (X;R). Indeed, for an n-cochain
ϕ ∈ Sn(X;R) in the image, there exists ψ ∈ Sn(X,X \ K;R) with %nK,X(ψ) = ϕ. The
functional ψ is trivial on all simplices σ : ∆n → X with σ(∆n) ∩K = ∅. Therefore, for
such a simplex σ

ϕ(σ) = %nK,X(ψ)(σ) = 0 .

2. For compact subsets K ⊂ L ⊂ X we have maps of pairs

(X,X \X)
%L,X→ (X,X \ L)

%K,L→ (X,X \K)

such that %K,L ◦ %L,X = %K,X .

We summarize:

Lemma 2.7.4.
Let X be a topological space.

1. For any compact subset K ⊂ X, the map %∗K,X gives a cochain map S∗(X,X \K;R) −→
S∗c (X;R). In particular we get an induced map

H∗(%K,X) : H∗(X,X \K;R) −→ H∗c (X;R).
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2. For compact subsets K ⊂ L ⊂ X we have

%K,L ◦ %L,X = %K,X

and therefore the diagram of cochain complexes:

S∗(X,X \K;R)
%∗K,X

((
%∗K,L

��

S∗c (X;R)

S∗(X,X \ L;R)

%∗L,X

66

commutes.

Remarks 2.7.5.

1. Recall that a poset I is called directed, if for all i, j ∈ I there is a k ∈ I with i, j 6 k

2. The compact subsets of a space X form a directed system: if K ⊂ X and L ⊂ X are
compact, both are subsets of the compact subset K ∪ L ⊂ X.

3. Given a poset I, we can consider diagrams (of modules, of abelian groups, of chain com-
plexes) of the shape I: for each i ∈ I, there is an object Mi and for all i 6 j there is a
map fji : Mi → Mj; with fkj ◦ fji = fki for i 6 j 6 k and fii = idMi

for all i. If I is
directed, then we call the system (Mi)i∈I a directed system.

4. Lemma 2.7.4 says that the system K 7→ S∗(X,X \ K;R) is a direct system of cochain
complexes : For K ⊂ L ⊂ L′ we have

%∗K,L′ = %∗L,L′ ◦ %∗K,L .

5. We recall some facts about the direct limit of a direct system (Mi)i∈I of R-modules and
of (co)chain complexes of R-modules.

The direct limit lim−→Mi of a direct system (Mi) is an R-module lim−→Mi, together with
a family of maps (hi : Mi → lim−→Mi)i∈I with the following universal property: for every
family of R-module maps gi : Mi → M that satisfy gj ◦ fji = gi for all i 6 j, there is a
unique morphism of R-modules g : lim−→Mi →M such that g ◦ hi = gi for all i ∈ I.

As a commuting diagram:
Mi

hi

##
fji

��

gi

��
lim−→Mi

∃!g //M

Mj

hj

;;

gj

BB

This universal property determines the R-module lim−→Mi up to unique isomorphism.

6. For a direct system (Mi, i ∈ I) of R-modules we can construct the direct limit lim−→Mi as

lim−→Mi =

(⊕
i∈I

Mi

)
/U
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where U is the submodule of
⊕

i∈IMi generated by all differences of the form mi −
fji(mi), i 6 j. The map gj : Mj → lim−→Mi is the composition of the injection for the
direct sum, followed by the canonical projection to the quotient.

7. We need an explicit construction of the direct limit of a direct system ((Ci)∗)i∈I of
(co)chain complexes: we write L := lim−→(Ci). In degree n, we set

Ln := lim−→((Ci)n) .

All diagrams constructed from the boundary operators

(Ci)n
di //

fji

��

(Ci)n−1

fji

��

$$
Ln−1

(Cj)n dj
// (Cj)n−1

::

commute and thus, by the universal property of Ln, induce a map

(Ci)n

��
fji

��

""
Ln

d // Ln−1

(Cj)n

BB<<

This gives a boundary map

d : Ln = (lim−→(Ci))n −→ (lim−→(Ci))n−1 = Ln−1 .

More generally, any morphism of a directed system induces a morphism between the
direct limits.

8. Let (Ai)i∈I , (Bi)i∈I and (Ci)i∈I be three direct systems of R-modules. If

0→ Ai
φi−→ Bi

ψi−→ Ci → 0

is a short exact sequence for all i ∈ I and if fBji ◦ φi = φj ◦ fAji , fCji ◦ ψi = ψj ◦ fBji for all
i 6 j, then we call

0→ (Ai)
(φi)−→ (Bi)

(ψi)−→ (Ci)→ 0

a short exact sequence of direct systems.

The composition of the map φi : Ai → Bi with hi : Bi → lim−→Bi gives maps Ai → lim−→Bi.
These maps yield, by the universal property of lim−→Ai, a unique map

φ : lim−→Ai −→ lim−→Bi .

Similarly, we get a map ψ : lim−→Bi → lim−→Ci.

Lemma 2.7.6.
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1. If

0→ (Ai)
(φi)−→ (Bi)

(ψi)−→ (Ci)→ 0

is a short exact sequence of directed systems of R-modules, then the sequence of R-
modules

0→ lim−→Ai
φ−→ lim−→Bi

ψ−→ lim−→Ci → 0

is short exact.

2. If (Ai)i∈I is a directed system of chain complexes, then

lim−→Hm(Ai) ∼= Hm(lim−→Ai).

Proof.
One has to show that i) φ is injective, ii) the kernel of ψ is the image of φ and iii) ψ is surjective.
We show i) and leave ii) and iii) and the second assertion as an exercise.

Let a ∈ lim−→Ai with φ(a) = 0 ∈ lim−→Bi. Write a = [
∑n

j=1 λjaj] with aj ∈ Aij . Choose
k > i1, . . . , in, then a = [ak] for some ak ∈ Ak. By assumption φ(a) = [φk(ak)] = 0. Thus there
is an N > k with fBNkφk(ak) = 0 and by the fact that the families φk are maps of directed
systems, we have 0 = fBNk ◦ φk(ak) = φN ◦ fANk(ak). But φN is a monomorphism and therefore
fANk(ak) = 0 ∈ lim−→Ai, hence a = [ak] = [fANk(ak)] = 0. �

We can use this algebraic result to approximate singular cohomology with compact support
via relative singular cohomology groups.

Proposition 2.7.7.
For all spaces X we have isomorphisms

lim−→S∗(X,X \K;R)
∼=−→ S∗c (X;R)

and hence
lim−→H∗(X,X \K;R)

∼=−→ H∗c (X;R).

Here the directed system runs over the poset of compact subsets K ⊂ X.

Proof.
By the universal property of lim−→S∗(X,X \K;R), the chain maps

%∗K,X : S∗(X,X \K;R) −→ S∗c (X;R)

from Lemma 2.7.4 combine into a single chain map

lim−→S∗(X,X \K;R) −→ S∗c (X;R)

A cochain ϕ ∈ Sn(X;R) is an element of Snc (X;R), if and only if there is a compact
K = Kϕ such that ϕ(σ) = 0 for all σ with σ(∆n) ∩K = ∅ and this is the case if and only if
ϕ ∈ Sn(X,X \K;R). This shows that the map is surjective. Injectivity is direct. Then apply
Lemma 2.7.6.2. �

To the eyes of compact cohomology, Rm looks like a sphere:
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Proposition 2.7.8.

H∗c (Rm;R) ∼= H∗(Rm,Rm \ {0};R) ∼=

{
R, ∗ = m,

0, ∗ 6= m.

Proof.
If K ⊂ Rm is compact, then there is a closed ball BrK (0) of radius rK around the origin, with
K ⊂ BrK (0). Without loss of generality we can assume that rK is a natural number. Thus we
can take the direct limit over the subsystem of such balls:

lim−→H∗(Rm,Rm \K;R) ∼= lim−→H∗(Rm,Rm \Br(0);R)

where the direct system on the right runs over all natural numbers r ∈ N. But

H∗(Rm,Rm \Br(0);R) ∼= H∗(Rm,Rm \ {0};R)

for all r and the diagrams

H∗(Rm,Rm \Br(0);R) //

��

H∗(Rm,Rm \Br+1(0);R)

��
H∗(Rm,Rm \ {0};R) id // H∗(Rm,Rm \ {0};R)

commute. Therefore

lim−→H∗(Rm,Rm \Br(0);R) ∼= lim−→H∗(Rm,Rm \ {0};R)

is an isomorphism, but the system on the right is constant and therefore

H∗c (Rm;R) ∼= lim−→H∗(Rm,Rm \Br(0);R) ∼= H∗(Rm,Rm \ {0};R).

�

Note that Rm is homotopy equivalent to a one-point space which is compact and for which
compactly supported cohomology and ordinary cohomology coincide, cf. Remark 2.7.3.2. Thus
cohomology with compact support is not homotopy invariant; it cannot be characterized by
axioms of Eilenberg-Steenrod type.

2.8 Poincaré duality

Observation 2.8.1.
Let R be a commutative unital ring.

• Let M be a connected m-dimensional manifold with an R-orientation (ox|x ∈ M). For
a compact subset L ⊂ M , following Proposition 2.6.10, let oL ∈ Hm(M,M \ L) be the
orientation of M along L. For an inclusion K ⊂ L of compact subsets, we have that

(%K,L)∗(oL) = oK

because (%x,K)∗(oK) = ox = (%x,L)∗(oL) = (%x,K)∗ ◦ (%K,L)∗(oL) for all x ∈ K and, by
Lemma 2.6.9.2, the class oK is uniquely characterized by this property.
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• Consider for any compact subset K ⊂M the cap-product

(−) ∩ oK : Hm−p(M,M \K;R) −→ Hp(M ;R)
α 7→ α ∩ oK = F (oK)⊗ 〈α,R(oK)〉 .

For an inclusion K ⊂ L of compact subsets, we have for α ∈ Hm−p(M,M \ K;R) that
(%K,L)∗(α) ∈ Hm−p(M,M \ L;R) and

(%K,L)∗(α) ∩ oL = α ∩ (%K,L)∗(oL) = α ∩ oK ∈ Hp(M ;R) .

because by Proposition 2.4.4.2 the cap product is natural.

By the universal property, the maps produced by the cap products combine into a map

lim−→(− ∩ oK) : lim−→Hm−p(M,M \K;R)
2.7.7
= Hm−p

c (M ;R) −→ Hp(M ;R).

Definition 2.8.2
Let M be a connected m-manifold with R-orientation (ox|x ∈M). The map

lim−→(− ∩ oK) : Hm−p
c (M ;R)→ Hp(M ;R)

is called Poincaré duality map and is denoted by PD or PDM .

We can now state the main result of this section:

Theorem 2.8.3 (Poincaré Duality).
Let M be a connected m-manifold with R-orientation (ox|x ∈M). Then the Poincaré duality

map
PD: Hm−p

c (M ;R) −→ Hp(M ;R)

is an isomorphism for all p ∈ Z.

Corollary 2.8.4 (Poincaré duality for compact manifolds).
Let M be a connected compact manifold of dimension m with an R-orientation (ox|x ∈ M)
and let [M ] = oM be the fundamental class of M , then

PD = (−) ∩ [M ] : Hm−p(M ;R) −→ Hp(M ;R)

is an isomorphism for all p ∈ Z. In particular, we have for a compact connected R-oriented
m-manifold Hm(M,R) = H0(M ;R) = R.

Example 2.8.5.
Any connected compact manifold of dimension m possesses a Z/2Z-orientation and thus a

fundamental class o
Z/2Z
M ∈ Hm(M ;Z/2Z) ∼= Z/2Z and thus for all p

(−) ∩ oZ/2ZM : Hm−p(M ;Z/2Z) ∼= Hp(M ;Z/2Z).

For instance the cohomology of RP n and its homology satisfy Poincaré duality with Z/2Z-
coefficients, regardless of the parity of n.

Proof. of Theorem 2.8.3
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1. First we consider the case of M = Rm. We know from Proposition 2.7.8 that

Hm−p
c (Rm) ∼=

{
R, p = 0,

0, p 6= 0

and this is isomorphic to Hp(Rm;R). Therefore, abstractly, both graded R-modules are
isomorphic. Let Br be the closed r-ball centered at the origin. We have to understand the
map

(−) ∩ oBr : Hm
c (Rm)→ H0(Rm;R).

We know from Example 2.4.7.2 that 〈1, α∩oBr〉 = 〈α, oBr〉 for all α ∈ Hm(Rm,Rm\Br;R).
But

〈−, oBr〉 : Hm(Rm,Rm \Br;R) −→ R, u 7→ 〈u, oBr〉

is bijective because of the universal coefficient theorem 2.2.5:

Hm(Rm,Rm \Br;R) ∼= Hom(Hm(Rm,Rm \Br), R)⊕ Ext(Hm−1(Rm,Rm \Br), R)

The last summand is trivial because Hm−1(Rm,Rm \Br) = 0. Thus we obtain that for all
r the map (−) ∩ oBr is the map

HomZ(Z〈oBr〉, R)→ R with ϕ 7→ ϕ(oBr)

and thus bijective and therefore its direct limit

lim−→(−) ∩ oBr : lim−→Hm(Rm,Rm \Br;R) −→ H0(Rm;R)

is an isomorphism as well.

2. Now assume that M = U∪V such that the claim holds for the open subsets U, V and U∩V
which are m-dimensional manifolds themselves, i.e. the maps PDU ,PDV and PDU∩V are
isomorphisms and each of them uses the orientation that is induced from the orientation
of M . Assume that K ⊂ U and L ⊂ V are compact and consider the relative version of
the Mayer-Vietoris sequences in cohomology

. . . // Hp(M,M \ (K ∩ L);R) // Hp(M,M \K;R)⊕Hp(M,M \ L;R) // Hp(M,M \ (K ∪ L);R)

// Hp+1(M,M \ (K ∩ L);R) // . . .

Excision for M \ U ⊂M \K tells us

Hp(M,M \K;R) ∼= Hp(U,U \K;R) .

Similarly, we find for M \ V ⊂M \ L and M \ (U ∩ V ) ⊂M \ (K ∩ L)

Hp(M,M \ (K ∩ L);R) ∼= Hp((U ∩ V ), (U ∩ V ) \ (K ∩ L);R)

Hp(M,M \ L;R) ∼= Hp(V, V \ L;R).
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We obtain a map of exact sequences

Hm−p
c (U ∩ V ;R)

∩oU∩V //

��

Hp(U ∩ V ;R)

��
Hm−p
c (U ;R)⊕Hm−p

c (V ;R)
∩oU⊕∩oV //

��

Hp(U ;R)⊕Hp(V ;R)

��
Hm−p
c (M ;R)

∩oM //

��

Hp(M ;R)

��
Hm−p+1
c (U ∩ V ;R)

∩oU∩V //

��

Hp−1(U ∩ V ;R)

��
Hm−p+1
c (U ;R)⊕Hm−p+1

c (V ;R)
∩oU⊕∩oV // Hp−1(U ;R)⊕Hp−1(V ;R)

The right column is exact by the Mayer-Vietoris sequence 1.8.1 in homology; the exact-
ness of the left column follows from the Mayer-Vietoris sequence in cohomology we just
considered and the isomorphisms obtained by excision by taking the limit. By assump-
tion, the top two and the two bottom horizontal arrows are isomorphisms. The five lemma
1.8.5 thus proves the case M = U ∪ V .

3. Now assume M =
⋃∞
i=1 Ui with open subsets Ui that exhaust M , i.e. such that U1 ⊂

U2 ⊂ . . .. We will show that if the claim holds for all open subsets Ui with the orientation
induced by the one of M , then the claim holds for M .

To that end, let U ⊂M be an arbitrary open subset and let K ⊂ U be compact. Excision
for (M \ U) ⊂ (M \K) ⊂M gives us an isomorphism

Hp(M,M \K;R) ∼= Hp(U,U \K;R)

and we denote by ϕK the inverse of this map. The direct limit of these ϕK over all K ⊂ U
for fixed U induces a map

ϕMU := lim−→ϕK : Hp
c (U ;R) −→ Hp

c (M ;R).

In general, this map is not an isomorphism (U is ‘too small to see enough of M ’), but
now we vary the open set U . For U ⊂ V ⊂ W we get

ϕWU = ϕWV ◦ ϕVU , ϕUU = id.

As the excision isomorphism is induced by the inclusion (U,U \K) ↪→ (M,M \K), we
get that the following diagram commutes:

Hm−p
c (U ;R)

ϕMU //

PDU
��

Hm−p
c (M ;R)

PDM
��

Hp(U ;R)
(iMU )∗ // Hp(M ;R)

and hence the corresponding diagram

lim−→Hm−p
c (Ui;R)

lim−→ϕMUi //

lim−→PDUi
��

Hm−p
c (M ;R)

PDM
��

lim−→Hp(Ui;R)
lim−→(iMUi

)∗
// Hp(M ;R)
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commutes as well. The map lim−→ϕMUi is an isomorphism because every compact subset K ⊂
M ends up in some open set Ui eventually. By assumption, each PDUi is an isomorphism
and so is their limit. Similarly the limit of the (iMUi)∗ is an isomorphism and therefore
PDM is an isomorphism.

4. We show that the claim is valid for arbitrary open subsets M ⊂ Rm. We express M as
a countable union M =

⋃∞
r=1 B̊r, where the Br are m-balls. This is possible because the

topology of Rm has a countable basis.

Each open ball B̊r in Rm is homeomorphic to Rm, thus by (1) the claim holds for these
balls B̊r.

Set Ui :=
⋃i
r=1 B̊r, then of course

U1 ⊂ U2 ⊂ . . .

The claim then holds by (2) for the Ui as finite unions, and because of (3) it then holds
for M .

5. Finally, we assume that M is as in the theorem: a connected m-manifold with some fixed
R-orientation. Every point in M has a neighborhood which is homeomorphic to some
open subset of Rm and we can choose the homeomorphism in such a way that it preserves
the orientation. We know that M has a countable basis for its topology and thus there
are open subsets V1, V2, . . . ⊂ M such that Vi ∼= Wi ⊂ Rm and the Vi cover M . Define
Ui :=

⋃i
j=1 Vj, thus M =

⋃
i Ui. The claim holds for the Vj by (4) and therefore it holds

for the finite unions Ui by (2) and thus by (3) for M .

�

2.9 Alexander-Lefschetz duality

We will derive a relative version of Poincaré duality Hm−q(M ;R) ∼= Hq(M ;R) and some geo-
metric applications. First, we consider Čech cohomology.

Observation 2.9.1.
Let X be an arbitrary topological space and let A ⊂ B ⊂ X a pair in X. We want to associate to
the pair a cohomology group. The rough idea of Čech cohomology is to approximate Hq(B,A)
by Hq(V, U) where the open neighborhoods come closer and closer to (B,A).

• We consider open neighborhoods (V, U) of (B,A), i.e. open subsets U ⊂ V ⊂ X with
A ⊂ U and B ⊂ V .

• From the inclusion (V, U) ⊂ (V ′, U ′) we get induced maps in relative cohomology

Hq(V ′, U ′) −→ Hq(V, U).

• We use this property to construct for a fixed pair A ⊂ B in X a directed system, so we
set (V ′, U ′) 6 (V, U) if and only if V ⊂ V ′ and U ⊂ U ′.

Definition 2.9.2
Čech cohomology of the pair (B,A) with A ⊂ B ⊂ X is defined as the limit

Ȟp(B,A) = lim−→Hp(V, U) .
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In this generality, Čech cohomology has very bad properties.

Remarks 2.9.3.
1. A space Y is called a euclidean neighborhood retract, if Y is homeomorphic to a subset
X ⊂ Rn for some n such that X is a retract of a neighborhood X ⊂ U ⊂ Rn.

2. If the space X is a euclidean neighborhood retract and A ⊂ B ⊂ X are locally compact,
then Ȟp(B,A) only depends on B and A and not on X.

3. If in addition A and B are euclidean neighborhood retracts themselves, then Ȟp(B,A) is
actually isomorphic to Hp(B,A). For more background on Čech cohomology see Dold’s
book Lectures on Algebraic Topology, reprint in: Classics in Mathematics. Springer-Verlag,
Berlin, 1995, VIII §6.

Observation 2.9.4.
• Now let M be a connected m-dimensional manifold and let K ⊂ L ⊂ M be compact

subsets in M . We assume that there is an orientation class oL ∈ Hm(M,M \L) of M along
L (possibly with coefficients in R, but we suppress coefficients from the notation). We
aim at a cap-pairing of Čech-cohomology Ȟ∗(L,K) with relative homology H∗(M,M \L)
in which the class oL is.

• For (L,K) ⊂ (V, U) we set up a map on the level of chains and cochains

Sp(V, U)⊗
(
Sk(U) + Sk(V \K)

Sk(V \ L)

)
−→ Sk−p(V \K,V \ L) (∗).

For this note the trivial inclusion V \ L ⊂ (U ∪ (V \ K)) = V . For α ∈ Sp(V, U) and

a+ b ∈ Sk(U)+Sk(V \K)
Sk(V \L)

we have

α ∩ (a+ b) = α ∩ a+ α ∩ b = 0 + α ∩ b

and this ends up in the correct chain group.

• The homology of S∗(U)+S∗(V \K)
S∗(V \L)

is isomorphic to H∗(V, V \L) and this in turn is isomorphic

to H∗(M,M \ L) via excision for (M \ V ) ⊂ (M \ L) ⊂M . This allows us to rewrite the
second tensorand on the left hand side of (∗), as desired.

• Excision for (M \ V ) ⊂ (M \ L) ⊂ (M \K) tells us as well that

H∗(V \K,V \ L;R) ∼= H∗(M \K,M \ L;R) .

This allows us to rewrite the right hand side.

• As Čech cohomology is the direct limit lim−→H∗(V, U) and as everything is compatible
(which we did not really show), the above gives a well-defined map

PD: Ȟq(L,K)⊗Hm(M,M \ L) −→ Hm−q(M \K,M \ L), α⊗ oL 7→ α ∩ oL.

Proposition 2.9.5 (Alexander-Lefschetz duality).
Let M be a connected m-dimensional manifold and let K ⊂ L ⊂ M with K,L compact. Let
M be oriented along L with respect to R. Then the map

PD = (−) ∩ oL : Ȟq(L,K;R) −→ Hm−q(M \K,M \ L;R)

is an isomorphism for all integers q.

109



Before we prove this result, we collect some properties of this form of the Poincaré duality
map.

Remarks 2.9.6.
1. This PD map still satisfies that PD(1) = oL for K = ∅ and 1 ∈ H0(L;R).

2. The PD-map is natural in the following sense: for any map of pairs i : (L,K) ↪→ (L′, K ′)
in M , we have also a map ĩ : (M \K ′,M \ L′) ↪→ (M \K,M \ L), and the diagram

Ȟq(L′, K ′)
(−)∩oL′ //

Ȟq(i)
��

Hm−q(M \K ′,M \ L′)

Hm−q (̃i)

��
Ȟq(L,K)

(−)∩oL // Hm−q(M \K,M \ L)

commutes.

3. We will not prove the following fact (cf. Bredon Lemma VI.8.1). The diagram

. . . // Ȟq(L,K) //

∩oL
��

Ȟq(L) //

∩oL
��

Ȟq(K) //

∩oK
��

Ȟq+1(L,K) //

∩oL
��

. . .

. . . // Hm−q(M \K,M \ L) // Hm−q(M,M \ L) // Hm−q(M,M \K) // Hm−q−1(M \K,M \ L) // . . .

commutes, and therefore (using the five lemma) it suffices to show the absolute version
of Alexander-Lefschetz duality,

Ȟq(L)
∩oL−→ Hm−q(M,M \ L) .

Lemma 2.9.7.
Let K and L are compact subsets of M with an orientation class oK∪L along K∪L and induced
orientation classes oK and oL. Then the diagram

. . .
∂ // Ȟq(K∪L) //

∩oK∪L
��

Ȟq(K)⊕Ȟq(L) //

∩oK⊕∩oL
��

Ȟq(K∩L)
∂ //

oK∩L

��

. . .

. . .
δ // Hm−q(M,M\(K∪L)) // Hm−q(M,M\K)⊕Hm−q(M,M\L) // Hm−q(M,M\(K∩L))

δ // . . .

commutes and has exact rows.

Proof.
• The only critical squares are the ones that are slightly out of the focus of the above

diagram, the ones with the connecting homomorphisms. The Ȟ∗-sequence in the upper
line comes from taking the direct limit of

0→ Hom(S∗(U) + S∗(V ), R) −→ Hom(S∗(U), R)⊕Hom(S∗(V ), R) −→ Hom(S∗(U ∩ V ), R)→ 0

over all open subsets U, V with K ⊂ U and L ⊂ V . (Note that by Lemma 2.7.6 taking
the direct limit is exact.)

• Let α ∈ Ȟq(K∩L;R). Choose a representing cocycle f with α = [f ], i.e. δf = 0 on U ∩V
and let ∂ be the connecting homomorphism for ordinary singular cohomology. What is
∂(α)? A preimage for f in the direct sum is a pair (f, 0) and its coboundary is (δf, 0),
so if we define h ∈ Hom(S∗U + S∗V,R) by the property h(u+ v) = δf(u) for u ∈ S∗(U),
v ∈ S∗(V ), then

∂(α) = [h].

We can extend h to a cochain on M (for instance by defining it to be trivial on the chains
that are supported on the complement).
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• We want to compare ∂(α) ∩ oK∪L and δ(α ∩ oK∩L). For the first term we express the
orientation class oK∪L = [a] as a sum

a = b+ c+ d+ e ∈ S∗(U ∩ V ) + S∗(U \ L) + S∗(V \K) + S∗(M \ (K ∪ L)).

This is possible, since the subsets U ∩ V, U \ L, V \ K and M \ (K ∪ L) are open and
therefore we can work with small chains for this open cover. With the notation as above
we get

∂(α) ∩ oK∪L = [h ∩ (b+ c+ d+ e)] = [h ∩ c] .
As h is only non-trivial on chains in U , only the terms involving b and c can contribute.
Since δ(f) is trivial on U ∩ V , h is only non-trivial on the complement of V in U .

• For α ∩ oK∩L we write [f ∩ a] and as the lower exact row comes from the short exact
sequence of complexes

0→ S∗(M)

S∗(M \K ∪ L)
−→ S∗(M)

S∗(M \K)
⊕ S∗(M)

S∗(M \ L)
−→ S∗(M)

S∗(M \K) + S∗(M \ L)
→ 0

we view f∩a as an element modulo S∗(M\K)+S∗(M\L). The connecting homomorphism
picks (f ∩ a, 0) as a pre-image of f ∩ a, then takes its boundary (∂(f ∩ a), 0). But the
latter is up to sign by the Leibniz rule

(∂(f ∩ a), 0) = (δ(f) ∩ a), 0)± (f ∩ ∂a, 0).

Writing a as a = b+ c+ d+ e as above and using that f ignores b and e we obtain that
the above is (δf ∩ c+ δf ∩d±f ∩∂a, 0). But δf ∩d and f ∩∂a are elements in S∗(M \K)
and hence all that remains when we pick a preimage is (δf ∩ c, 0), thus

δ(α ∩ oK∩L) = [δf ∩ c] = [h ∩ c].

�

Now we can prove Alexander-Lefschetz duality.
Proof. of Proposition 2.9.5
Remark 2.9.6.3 implies that it suffices to prove the absolute case, i.e. to show that for any
compact subset K ⊂M

(−) ∩ oK : Ȟq(K) −→ Hm−q(M,M \K)

is an isomorphism for all q.

1. If K is empty, then we get the true statement that Ȟq(∅) = 0 = Hm−q(M,M). For K a
point we only get something non-trivial for degree q = 0 and here 1 ∈ R = Ȟ0(K) is sent
to oK = ox via Poincaré duality. Similarly, if M = Rm and K is convex and compact we
can proceed as in the case of a point.

2. If K = K1 ∪ . . .∪Kr with Ki compact and convex and M is still Rm an induction over r
using Lemma 2.9.7 and (1) proves the claim.

3. For M = Rm and K arbitrary we can find a neighborhood U of K of the form U =
⋃N
i=1 Ui

with the Ui being convex. Such U suffice to calculate the direct limit lim−→Hq(U) for the

Čech cohomology of K. For such U we have

Hm−q(Rm,Rm \K) ∼= lim−→Hm−q(Rm,Rm \ U)

because Rm \ K =
⋃
U Rm \ U . The U satisfy Alexander-Lefschetz duality by (2) and

hence K does.
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4. Finally let M and K be arbitrary, but satisfying the conditions of Proposition 2.9.5.
Express K = K1∪. . .∪Kr such that the Ki are contained in a chart that is homeomorphic
to Rm and proceed as in the case before.

�

2.10 Application of duality

We specialize to the case when the manifold M is Rm with the standard orientation.

Proposition 2.10.1 (Classical Alexander duality).
Let K ⊂ Rm be compact. Then

Ȟq(K) ∼= Hm−q(Rm,Rm \K) ∼= H̃m−q−1(Rm \K).

Proof.
Here the first isomorphism is the absolute version of Alexander-Lefschetz duality 2.9.2 for
M = Rm. The second one is a result of the long exact sequence of pairs in homology. �

Remark 2.10.2.

• This is bad news for knot complements. A knot K is the homeomorphic image of S1 in
R3. Proposition 2.10.1 implies that

H1(R3 \K) ∼= Ȟ1(K)

but the circle is a euclidean neighborhood retract and therefore Čech cohomology concides
with ordinary singular cohomology. Since H1(K) ∼= Z, the first homology group of any
knot complement is isomorphic to the integers, thus it does not help to distinguish knots.

• The fundamental group of the knot complement does a better job. Here the un-knot gives
the integers, but for instance the complement of the trefoil knot
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has a fundamental group that is not isomorphic to the integers, but is isomorphic to the
group 〈a, b|a2 = b3〉. This group is actually isomorphic to the braid group on three strands.
(This can be computed using the Wirtinger presentation derived from the link diagram of
a knot, see Section 4.2.3 and 4.2.4 of J. Stillwell. Classical Topology and Combinatorial
Group Theory. Springer Graduate Text in Mathematics 72, 1993.

Proposition 2.10.3.
Let M be a compact oriented connected m-manifold and let ∅ 6= K ⊂ M be compact. If the
first homology H1(M) of the ambient manifold is trivial, then Ȟm−1(K) is a free abelian group.
The complement M \K then has rankȞm−1(K) + 1 connected components.

Proof.
Let k = |π0(M \K)| be the number of components of the complement of K in M . By Corollary
1.3.3,

k = rankH0(M \K) = 1 + rankH̃0(M \K).

By assumption H1(M) = 0 = H̃0(M) and therefore we know from the long exact sequence and
duality that

H̃0(M \K) ∼= H1(M,M \K) ∼= Ȟm−1(K).

Since the group Ȟm−1(K) is isomorphic to a zeroth homology group, it is free abelian. The
statement about k is now the combination of the two equations. �

Proposition 2.10.4.
If M is a compact connected orientable m-manifold and if the first homology group of M
with integral coefficients vanishes, then all compact submanifolds of M without boundary of
dimension (m− 1) are orientable.

Compact manifolds without boundary are often called closed.

Proof.
A submanifold N ⊂M is a euclidean neighborhood retract and therefore

Hm−1(N) ∼= Ȟm−1(N) ∼= H1(M,M \N) ∼= H̃0(M \N) .

Thus Hm−1(N) is free abelian. Theorem 2.6.11 implies that the components of N are orientable.
�

Corollary 2.10.5.
It is not possible to embed real projective space RP 2 into R3.

Proof.
If one could, then one could embed RP 2 into S3 as the one-point compactification of R3. Due
to H1(S3) = 0, the 2-manifold RP 2 would be orientable, but we know from Example 2.6.13
that this is not true. �

At Oberwolfach Research Institute for Mathematics there is a model of the Boy surface.
This is a model of an immersion of RP 2 into three-space. http://www.mfo.de/general/boy/
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Proposition 2.10.6.
Let M be a compact connected and orientable m-manifold and let

βi := dimQHi(M ;Q)

be the ith Betti number of M . Then βi = βm−i.

Proof.
Note that in this case Čech cohomology Ȟ∗(M) = Ȟ∗(M, ∅) is isomorphic to H∗(M) because
a limit is to be taken over the relative cohomology groups H∗(M,U) for the directed system of
pairs (M,U) with U any open set which has (M, ∅) as a maximal element. Duality 2.9.5 then
implies that

βm−i = dimQHm−i(M ;Q)
2.9.5
= dimQH

i(M ;Q)

As the group Q is divisible, Remark 2.2.2.7 implies that there is no Ext-term arising in the
universal coefficient theorem 2.2.4 and thus

dimQH
i(M ;Q) = dimQ(Hom(Hi(M),Q)) .

The right hand side is equal to the dimension of the vector space of the homomorphisms from
the free part of the homology group Hi(M) to Q which is equal to the rank of Hi(M). Since
tensoring with Q is exact, there is no Tor-term and thus Hi(M ;Q) = Hi(M) ⊗Z Q; thus the
rank of Hi(M) is equal to βi = dimQHi(M ;Q). �

Corollary 2.10.7.
Let M be a compact connected and orientable m-manifold of odd dimension. Then the Euler
characteristic χ(M) =

∑m
i=0(−1)iβi vanishes.

Proof.
We compute

χ(M) =
m∑
i=0

(−1)iβi
2.10.6
=

m∑
i=0

(−1)iβm−i = (−1)mχ(M) .

�

Proposition 2.10.8.
For M a compact connected orientable m-manifold with boundary the duality holds

Ȟq(M,∂M) ∼= Hm−q(M) .

Proof.
Glue a collar to M , i.e., consider the auxiliary manifold

W := M ∪ (∂M × [0, 1)) =: M ∪W ′.

Then W is an m-manifold without boundary; thus duality 2.9.5 applies to the pair of compact
subsets ∂M ⊂M :

Ȟq(M,∂M) ∼= Hm−q(W \ ∂M,W \M) .
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Now note that

W \ ∂M 'M \ ∂M tW ′ \ ∂M and W \M = W ′ \ ∂M

so that the right hand side becomes

Hm−q(M \ ∂M) ∼= Hm−q(M) .

For the last isomorphism, we used that taking the complement of the boundary ∂M in M
gives a space that is homotopy equivalent to M . �

Corollary 2.10.9.
If M is a compact connected orientable m-manifold, then the Euler characteristic of the bound-
ary ∂M is always even.

Proof.
With W as above, the homotopy equivalence W ' M implies χ(M) = χ(W ). The long exact
sequence of the pair W \M ⊂ W gives

χ(W ) = χ(W \M) + χ(W,W \M) .

The homotopy equivalenceW \M ' ∂M yields χ(W \M) = χ(∂M) and duality 2.9.5 guarantees
that χ(W,W \M) = (−1)mχ(M). Therefore

χ(∂M) = (1 + (−1)m−1)χ(M)

and this is always an even number. �

Remark 2.10.10.
1. Recall from from Example 1.12.8 that the real projective space has the structure of a CW

complex with one cell in each dimension. Thus RP 2m has Euler characteristic 1 and by
Corollary 2.10.9 cannot be a boundary.

2. For the calculations of of the Euler characteristic of complex and quaternionic projective
spaces, recall from Example 1.12.8 that for complex projective space of dimension 2m we
have cells in dimension up to 4m, but only in even dimensions. Similarly, for quaternion
projective space of dimension 2m cells occur up to dimension 8m, but only in degrees
divisible by 4.

Thus

χ(CP 2m) =
2m∑
i=0

(−1)2i = 2m+ 1

and

χ(HP 2m) =
2m∑
i=0

(−1)4i = 2m+ 1 .

By Corollary 2.10.9, all these projective spaces do not occur as boundaries of connected
compact orientable manifolds.

3. These facts are important in bordism theory : one can introduce an equivalence relation on
manifolds by saying that two m-manifolds M and N are bordant, if there is an (m+ 1)-
manifold W whose boundary is the disjoint union of M and N , ∂W = M tN . Thus the
projective spaces give non-trivial equivalence classes under the bordism relation.
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2.11 Duality and cup products

Let M be a connected closed m-manifold with an R-orientation oRM for some commutative ring
R. We consider the composition

Hk(M ;R)⊗R Hm−k(M ;R) ∪ // Hm(M ;R)

(−)∩oRM
��

H0(M ;R) ∼= R

Definition 2.11.1
Let M be a connected closed m-manifold with an R-orientation for some commutative ring R.
For α ∈ Hk(M ;R), β ∈ Hm−k(M ;R) the map

(α, β) 7→ 〈α ∪ β, oRM〉

with values in R is called the cup product pairing of M .

Proposition 2.11.2.
If R is a field or if R = Z and all homology groups of M are torsion-free, the cup product

pairing is non-singular in the sense that the two induced maps

Hk(M ;R) → HomR(Hm−k(M ;R), R) and Hm−k(M ;R) → HomR(Hk(M ;R), R)
α 7→

(
β 7→ 〈α ∪ β, oRM〉 ∈ R

)
β 7→

(
α 7→ 〈α ∪ β, oRM〉 ∈ R

)
are both isomorphisms.

Proposition 2.11.2 holds as long as one restricts attention to the free part of the cohomology
groups: let FHk(M ;R) denote the free part of Hk(M ;R) then there is a non-singular pairing

FHk(M ;R)⊗R FHm−k(M ;R)→ R.

In geometric applications the ground ring is often R = R.
Proof.
The Kronecker pairing, cf. Lemma 2.1.6, yields a map

κ : Hk(M ;R)→ HomR(Hk(M ;R), R)

and Poincaré duality 2.8.3 tells us that capping with oRM is an isomorphism between Hk(M ;R)
and Hm−k(M ;R). The composite is

Hk(M ;R)
κ→ HomR(Hk(M ;R), R) ∼= HomR(Hm−k(M ;R), R),

α 7→ 〈α, (−) ∩ oRM〉 .

Over a field, κ and hence the composite is an isomorphism. We finally use the duality relation

〈α ∪ β, oRM〉
2.4.7.2

= 〈1, (α ∪ β) ∩ oRM〉
2.5.11.2

= 〈1, α ∩ (β ∩ oRM)〉 2.4.7.2
= 〈α, β ∩ oRM〉

In the torsion-free setting, we obtain an isomorphism as well. �

Definition 2.11.3
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Let M be a connected closed m-manifold with an R-orientation for some commutative ring R.
Dual to the cup product pairing, we define the intersection form:

Hp(M ;R)⊗Hm−p(M ;R)→ R

with a⊗ b 7→ 〈PD−1(a) ∪ PD−1(b), oRM〉.

For even-dimensional manifolds, the signature of this form is a particularly important in-
variant in differential topology. For instance one can show that for a compact oriented manifold
W such that ∂W = M with a 4n-dimensional manifold M , the signature of the intersection
form on M is trivial.

For explicit computations of cohomology rings, the following Lemma is useful:

Lemma 2.11.4.
Let M be a connected closed m-manifold with a Z-orientation and with torsion-free homology

groups. If Hp(M) ∼= Z ∼= Hm−p(M) and if α ∈ Hp(M), β ∈ Hm−p(M) are generators, then
α ∪ β is a generator of the group Hm(M) ∼= Z.

Proof.
Since by Proposition 2.11.2 the cup product pairing is non-degenerate for torsion free cohomol-
ogy, there exists for any generator α ∈ Hp(M) an element β′ ∈ Hm−p(M) with

〈α ∪ β′, oM〉 = 1 .

Note that this implies that α ∪ β′ is a generator of Hm(M), as a dual of the generator oM .
As β is a generator of Hm−p(M), we know that β′ = kβ for some integer k and hence

1 = 〈α ∪ β′, oM〉 = 〈α ∪ kβ, oM〉 = k〈α ∪ β, oM〉.

But 〈α∪β, oM〉 is an integer as well, so k has to be ±1 and therefore α∪β generates the group
Hm(M) as well. �

We will use this result to calculate the cohomology rings of projective spaces.

Lemma 2.11.5.
If α ∈ H2(CPm) is an additive generator, then αq = α∪q ∈ H2q(CPm) is an additive generator
as well for all q 6 m.

Proof.
We have to show by induction on the complex dimension m that αq is an additive generator of
H2q(CPm).

• For m = 1 there is nothing to prove because CP 1 ∼= S2 and there α2 = 0.

• Consider the inclusion i : CPm−1 ↪→ CPm. The CW structure of CPm explained in Ex-
ample 2.12.9 implies CPm ∼= CPm−1 ∪f D2m for attaching the 2m-cell. For m > 1

i∗ : H2i(CPm)→ H2i(CPm−1)

is an isomorphism for 1 6 i 6 m−1. In particular, i∗(α) additively generates H2(CPm−1).
Induction over m then shows that (i∗(α))q generates H2q(CPm−1) for all 1 6 q 6 m− 1.
But (i∗(α))q = i∗(αq), by Proposition 2.5.9.4, and i∗ is an isomorphism, so αq additively
generates H2q(CPm) for 1 6 q 6 m− 1. Lemma 2.11.4 then shows that α ∪ αm−1 = αm

generates H2m(CPm).
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Corollary 2.11.6.
As a graded ring, we have

H∗(CPm) ∼= Z[α]/αm+1 with |α| = 2.

Similarly,
H∗(RPm;Z/2Z) ∼= Z/2Z[α]/αm+1 with |α| = 1.

(Taking coefficients in Z/2Z leads to a complex with vanishing differentials, cf. Example 1.13.3.)

There are two geometric consequences that follow from this calculation.

Proposition 2.11.7.
For 0 < m < n the inclusion j : CPm ↪→ CP n is not a weak retract.

Proof.
Let us assume that there exists r : CP n → CPm with r ◦ j ' id. On the second cohomology
groups, the map j induces an isomorphism

j∗ : H2(CP n)→ H2(CPm) .

Let α ∈ H2(CPm) be an additive generator. Because of j∗ ◦ r∗ = id, the element β := r∗(α) ∈
H2(CP n) is an additive generator as well. As αm+1 = 0 we get

βm+1 = r∗(α)m+1 = r∗(αm+1) = r∗(0) = 0.

But by Corollary 2.11.6 H∗(CP n) ∼= Z[β]/βn+1 and hence βm+1 6= 0. �

Proposition 2.11.8.
The attaching map of the 2n-cell in CP n is not null-homotopic.

Proof.
Let ϕ : S2n−1 → CP n−1 be the attaching map, thus

CP n = CP n−1 ∪ϕ D2n.

If ϕ were null-homotopic, then there is a homotopy H : S2n−1 × [0, 1] → CP n−1 with H1 = ϕ
and H0 constant. Since H0 is constant, H factorizes to a map H̃

S2n−1 × [0, 1] H //

��

CP n−1

D2n
H̃

77

with the vertical map being (x, t) 7→ tx. Then

H̃ t idCPn−1 : D2n t CP n−1 → CP n−1
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factorizes to a retract r : CP n → CP n−1,

D2n t CP n−1

��

H̃tid // CP n−1

CP n = D2n ∪ϕ CP n−1

r

44

in contradiction to Proposition 2.11.7. �

Remark 2.11.9.
A famous example of this phenomenon is the Hopf fibration

h : S3 → CP 1 = S2 = C ∪∞ .

Consider S3 ⊂ C2 and send S3 3 (u, v) to

h(u, v) :=

{
u
v
, v 6= 0,

∞, v = 0.

Up to a homeomorphism of S2, this is the attaching map for the 4-dimensional cell of CP 2

and thus by Proposition 2.11.8 not null-homotopic. In fact, the map h generates the homotopy
group π3(S2) ∼= Z.

2.12 The Milnor sequence

The aim is to calculate the cohomology rings of infinite dimensional projective spaces and more
generally to understand cohomology groups for infinite dimensional CW complexes.

We start with some algebraic structures: let (Mi)i∈N0 be a family of R-modules together
with a sequence of maps

M0
f1←−M1

f2←−M2
f3←− . . .

We call such a family (Mi, fi)i∈N0 an inverse system (over the poset (N0,6)).

Definition 2.12.1
The inverse limit of the inverse system (Mi)i∈N0 is the R-module

lim←−Mi = {(x0, x1, . . .) ∈
∏
i∈N0

Mi|fi+1(xi+1) = xi, i > 0}.

Remarks 2.12.2.

1. The restrictions of the projections of the product endow the the inverse limit with a
system of maps such that the diagrams

lim←−Mi

pj+1 //

pj
$$

Mj+1

fj+1

��
Mj

119



commute for all j ∈ N0. With their use, we can characterize the inverse limit by the
following universal property:

Mj+1

fj+1

��

W
∃! //

hj+1
00

hj ..

lim←−Mi

pj+1

::

pj
$$
Mj

2. If ξ denotes the map that sends the element (x0, x1, . . .) ∈
∏

i∈N0
Mi to (x0− f1(x1), x1−

f2(x2), . . .) then we can express the inverse limit as the kernel of ξ,

0→ lim←−Mi −→
∏
i∈N0

Mi
ξ−→
∏
i∈N0

Mi .

Definition 2.12.3
Let lim←−

1Mi be the R-module coker(ξ).

By definition, we have an exact sequence

0→ lim←−Mi −→
∏
i∈N0

Mi
ξ−→
∏
i∈N0

Mi −→ lim←−
1Mi → 0 .

Lemma 2.12.4.
If

0→ (Mi, fi) −→ (Ni, gi) −→ (Qi, hi)→ 0

is a short exact sequence of inverse systems (cf. Remark 2.7.6.8 for exact sequences of direct
systems), then the sequence

0→ lim←−Mi −→ lim←−Ni −→ lim←−Qi −→ lim←−
1Mi −→ lim←−

1Ni −→ lim←−
1Qi → 0

is exact.

Proof.
Consider the map ξ :

∏
iMi →

∏
iMi as a chain complex C∗ that is non-trivial only in two

degrees 0 and 1. Then the first homology group is the inverse limit and the zeroth homology
group is the lim-one term

H1C∗ = ker ξ ∼= lim←−Mi and H0C∗ = cokerξ ∼= lim←−
1Mi .

We can translate the short exact sequence of inverse systems into a short exact sequence of
chain complexes

0 //
∏

iMi

ξ

��

//
∏

iNi

ξ

��

//
∏

iQi

ξ

��

// 0

0 //
∏

iMi
//
∏

iNi
//
∏

iQi
// 0

and the associated long exact sequence (cf. Proposition 1.5.6) gives precisely our claim. �

Therefore the lim-one terms measure how non-exact inverse limits are. We present a criterion
which ensures that we have exactness.
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Lemma 2.12.5 (Mittag-Leffler condition).
Let (Mi, fi) be an inverse system. Assume that for every n > 0 there exists N = N(n) such

that for all m > N that the image of fn+1 ◦ . . . ◦ fm : Mm → Mn is equal to the image of
fn+1 ◦ . . . ◦ fN : MN →Mn. Then

lim←−
1Mi = 0.

Proof.
Without loss of generality, we can assume that the sequence N(n) is monotonously increasing
in n. We have to show that the cokernel of ξ is trivial. This means that we have to show that
any sequence (ai)i ∈

∏
iMi is in the image of ξ, if the Mittag-Leffler condition holds.

• As a first case, we deal with sequences (ai)i such that every ai is in the image of fi+1 ◦
. . . ◦ fN(i) : MN(i) →Mi.

By induction on k, we construct elements b0, . . . , bk with

bi ∈ im(fi+1 ◦ . . . ◦ fN(i)) ⊂Mi

such that ai = bi − fi+1bi+1 for all i < k. Then we have (ai) = ξ(bi).

We start with a0 = b0 ∈M0. The condition is empty for k = 0.

Assume that elements b0, b1, . . . , bk have been found. Because both ak and bk are in
im(fk+1 ◦ . . . ◦ fN(k)) and because by the assumption that the image of fk+1 ◦ . . . ◦ fN(k+1)

is equal to the image of fk+1 ◦ . . . ◦ fN(k), we can find y ∈MN(k+1) with

ak − bk = fk+1 ◦ . . . ◦ fN(k+1)(y).

Define
bk+1 := −fk+2 ◦ . . . ◦ fN(k+1)(y).

Then
bk − fk+1bk+1 = bk + ak − bk = ak .

Thus (ak) ∈ im ξ.

• If for some i the element ai is not in the image fi+1 ◦ . . . ◦ fN(i) : MN(i) → Mi, then we
consider the sum

a′i := ai + fi+1ai+1 + . . .+ fi+1 ◦ . . . ◦ fN(i)(aN(i)).

We check that

ai − (a′i − fi+1(a′i+1)) = ai − ai − fi+1(ai+1)− . . .− fi+1 ◦ . . . ◦ fN(i)(aN(i))

+ fi+1(ai+1) + fi+1 ◦ fi+2(ai+2) + . . .+ fi+1 ◦ . . . ◦ fN(i+1)(aN(i+1))

= fi+1 ◦ . . . ◦ fN(i)+1(aN(i)+1) + . . .+ fi+1 ◦ . . . ◦ fN(i+1)(aN(i+1))

and therefore ai−(a′i−fi+1(a′i+1)) is in the image of fi+1◦. . .◦fN(i+1). As in the preceeding
case, we write ai − (a′i − fi+1(a′i+1)) as bi − fi+1bi+1. Thus

ai = ci − fi+1(ci+1)

with ci := bi + a′i.
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Examples 2.12.6.

1. If every map fi is surjective, then the inverse system (Mi, fi) satisfies the Mittag-Leffler
criterion with N(n) = n+ 1. For instance, the inverse system of rings

Z/pZ←− Z/p2Z←− Z/p3Z←− . . .

satisfies this condition. The inverse limit of this system is a ring, called the p-adic integers.

These are denoted by Ẑp and they are the p-adic completion of the ring of integers.

2. We want to apply Lemma 2.12.5 to inverse systems of cochain complexes.

Assume that X is a CW complex and that (Xn)n is a sequence of subcomplexes with
Xn ⊂ Xn+1 and X =

⋃
nXn. For instance, we could take Xn = Xn, the n-skeleton of X.

Consider for each n the cochain complex

S∗n(X) := S∗(Xn).

The inclusion maps Xn ⊂ Xn+1 induce maps of cochain complexes

fn+1 : S∗n+1(X) −→ S∗n(X) .

We therefore have an inverse system

S∗0(X)
f1←− S∗1(X)

f2←− . . .

which are maps of cochain complexes, i.e. commute with the coboundary maps

Sin+1(X)
fn+1 //

δ
��

Sin(X)

δ
��

Si+1
n+1(X)

fn+1 // Si+1
n (X).

Lemma 2.12.7.
If (C∗n, fn) is an inverse system of cochain complexes, such that for every cochain degree m the
inverse system (Cm

n , fn) satisfies the Mittag-Leffler condition, then the sequence

0→ lim←−
1Hm−1(C∗n) −→ Hm(lim←−C

∗
n) −→ lim←−H

m(C∗n)→ 0

is exact.

Proof.
We consider for fixed degree m the two obvious exact sequences

0→ Bm
n −→ Zm

n −→ Hm(C∗n)→ 0 (2)

and
0→ Zm

n −→ Cm
n

δn−→ Bm+1
n → 0. (3)
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1. As the Cm
n are supposed to satisfy the Mittag-Leffler condition, Lemma 2.12.5 implies

that
lim←−

1Cm
n = 0, for all m. (4)

Lemma 2.12.4 applied to the short exact sequence (3) implies that the sequence

lim←−
1Cm

n −→ lim←−
1Bm+1

n → 0

is exact and thus lim←−
1Bm+1

n = 0. Therefore the sequence (2) yields that

lim←−
1Zm

n
∼= lim←−

1Hm(C∗n) .

2. In addition we know, again from Lemma 2.12.4 applied to (3), that the sequence

0→ lim←−Z
m
n −→ lim←−C

m
n

lim←− δn
−→ lim←−B

m+1
n

is exact and hence the inverse limit of the m-cocycles is equal to the module of m-cocycles
in the inverse limit complex, i.e.

lim←−Z
m
n
∼= Zm(lim←−C

∗
n) .

3. As the lim-one term on the inverse system of coboundaries is trivial by 1., we obtain from
(2) that the sequence

0→ lim←−B
m
n −→ lim←−Z

m
n −→ lim←−H

m(C∗n)→ 0

is exact as well. Lemma 2.12.4 applied to (3) tells us that the kernel of the connecting
homomorphism

∂ : lim←−B
m
n −→ lim←−

1Zm−1
n → 0 (∗)

is isomorphic to the image of the map

lim←−C
m−1
n

lim←− δn
−→ lim←−B

m
n

and thus to the coboundaries, i.e.

Bm(lim←−C
∗
n) ∼= ker ∂ .

Thus, we get an inclusion Bm(lim←−C
∗
n) ⊂ lim←−B

m
n . Therefore we get the following sequence

of inclusions

Bm(lim←−C
∗
n) ⊂ lim←−B

m
n ⊂ lim←−Z

m
n = Zm(lim←−C

∗
n) (∗∗) ,

where the last identity is 2.

4. Recall that for any inclusion A ⊂ B ⊂ C of submodules, the diagram

0

��

0

��

0

��
0 // A

��

id //

��

A //

��

0

��

// 0

0 // B

��

//

��

C //

��

C/B

id
��

// 0

0 // B/A

��

//

��

C/A //

��

C/B

��

// 0

0 0 0
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has exact rows and the first two lines are exact so that by the nine-lemma the last row is
exact.

5. Applied to the inclusion (∗∗) of submodules this yields the short exact sequence

0→
lim←−B

m
n

Bm(lim←−C
∗
n)
−→

Zm(lim←−C
∗
n)

Bm(lim←−C
∗
n)
−→

lim←−Z
m
n

lim←−B
m
n

→ 0

is exact. The middle term is the cohomology Hm(lim←−C
∗
n) of the inverse limit complex.

The right term is isomorphic to lim←−H
m(C∗n) and the left term is isomorphic to the lim-one

term lim←−
1Hm−1(C∗n) because the kernel of ∂ is Bm(lim←−C

∗
n) and thus by (∗) the quotient

is lim←−
1Zm−1

n
∼= lim←−

1Hm−1(C∗n) by 2.

�

Theorem 2.12.8 (Milnor sequence).
If X is a CW complex with a filtration X0 ⊂ . . . ⊂ Xn ⊂ Xn+1 ⊂ . . . of subcomplexes with
X =

⋃
nXn, then the sequence

0→ lim←−
1Hm−1(Xn;G) −→ Hm(X;G) −→ lim←−H

m(Xn;G)→ 0

is exact for all abelian groups G.

Proof.
• We define C∗n = Hom(S∗(Xn), G). This system of cochain complexes satisfies the Mittag-

Leffler condition because the inclusions of chains

Sm(Xn) ↪→ Sm(Xn+1)

dualize to epimorphisms

Hom(Sm(Xn+1), G) −→ Hom(Sm(Xn), G) .

• The only thing we have to show to apply Lemma 2.12.7 is that for the term in the middle

Hm(X;G) ∼= Hm(lim←−Hom(S∗(Xn), G)) .

By Remark 2.12.3.1, the inverse limit has a universal property dual to the one of the
direct limit and the maps induced from the inclusions Xn ↪→ X

Hom(S∗(X), G) −→ Hom(S∗(Xn), G)

induce a homomorphism

Hom(S∗(X), G)→ lim←−Hom(S∗(Xn), G) .

• To see that this is an isomorphism, first note that if a space X is the union of a directed
system of subspaces Xα with the property that each compact subset of X is contained in
some Xα, then for homology the map

lim−→Si(Xα;G)→ Si(X;G)

is an isomorphism for all abelian groups G. (Note that by Corollary 1.11.16.1, this applies
to a filtration by subcomplexes.)

Indeed, for surjectivity, represent a cycle on X by a sum of finitely many simplices. The
union of their images is compact in X and thus contained in some Xα, which ensures
surjectivity. For injectivity, if a cycle in some Xα is a boundary in X, by compactness, it
is a boundary in some Xβ ⊃ Xα, hence represents zero in lim−→Hi(Xα;G).
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• The dual of this argument then shows the claim.

�

Example 2.12.9.
We consider the infinite complex projective space CP∞. It is defined as a limit lim−→CP

n. This
space has a natural structure of a CW complex with a cell in every even dimension. To apply
Theorem 2.12.8, we consider the skeleton filtration, i.e.

X0 = pt ⊂ X1 = CP 1 ⊂ X2 = CP 2 ⊂ . . .

Thus Xn is the 2n-skeleton of CP∞. The Milnor sequence 2.12.8 in this case is for each m

0→ lim←−
1Hm−1(CP n) −→ Hm(CP∞) −→ lim←−H

m(CP n)→ 0 (∗) .

However, the maps Hm−1(CP n+1) → Hm−1(CP n) are surjective. By Remark 2.12.6.1, this
inverse system satisfies the Mittag-Leffler condition and thus by Lemma 2.12.5

lim←−
1Hm−1(CP n) = 0

and therefore (∗) gives isomorphisms

Hm(CP∞) ∼= lim←−H
m(CP n).

The inverse limit of truncated polynomial rings Z[α]/αn+1 is isomorphic to the ring of formal
power series. Recall that for a commutative ring R, the ring R[[z]] of formal power series is the
set RN of sequences with value in R with addition (an) + (bn) = (an + bn) and multiplication
given by a Cauchy product (an) · (bn) = (

∑n
k=1 akbn−k).

Corollary 2.12.10.

H∗(CP∞) ∼= Z[[α]], with |α| = 2 ,

where Z[[α]] denotes the ring of formal power series in α.

The arguments are analogous for the infinite real and quaternionic projective spaces, RP∞
and HP∞.

Corollary 2.12.11.

H∗(RP∞;Z/2Z) ∼= Z/2Z[[α]], with |α| = 1

and
H∗(HP∞) ∼= Z[[α]], with |α| = 4.

Remark 2.12.12.
1. At times, the cohomology of a space is considered as a direct sum

H∗(X;G) =
⊕
n>0

Hn(X;G) .

From that point of view, we only have finite sums in H∗(X;G) so that this interpretation
yields the identification of Hm(CP∞) and H∗(RP∞;Z/2Z) as a polynomial ring: the
formulae

H∗(CP∞) ∼= Z[α] with |α| = 2

and
H∗(RP∞;Z/2Z) ∼= Z/2Z[α] with |α| = 1.

can be found in the literature as well.
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2. However, viewing homology H∗(X) as a direct sum
⊕

nHn(X) and for free H∗(X) the
cohomology as a dual, then the description of H∗(X) as a product

∏
nH

n(X) is more
natural.

2.13 Lens spaces

Observation 2.13.1.
1. Let m ∈ N and let `1, . . . , `n be natural numbers with gcd(m, `i) = 1 for all i and assume

n > 2. Choose a primitive n-root of unity ζ := e
2πi
m and define an action of Z/mZ on

S2n−1 by
% : Z/mZ× S2n−1 → S2n−1,

(ζ; z1, . . . , zn) 7→ (ζ`1z1, . . . , ζ
`nzn) ,

where we view S2n−1 as a subspace of Cn.

2. This action is free: if %(ζr; z1, . . . , zn) = (z1, . . . , zn) for some (z1, . . . , zn), then we have
ζr`izi = zi for all i. Since there exists i such that zi 6= 0, we find ζr`i = 1 and thus
r`i = 0 mod m. Since `i is invertible modulo m, we find r = 0 mod m.

Example 2.13.2.
If m = 2, then the all integers `i must be odd and therefore the action

% : Z/2Z× S2n−1 → S2n−1

is the antipodal action.

We consider the quotient spaces S2n−1/(Z/mZ).

Definition 2.13.3
The space L = L(m; `1, . . . , `n) = S2n−1/(Z/mZ) with the action as described in Observation
2.13.1 as above is called lens space with parameters (m; `1, . . . , `n).

Remarks 2.13.4.
1. For m = 2 we get the real projective spaces L(2; `1, . . . , `n) = RP 2n−1 as lens spaces.

2. The classical case is the three manifold case: For integers p, q with gcd(p, q) = 1 one
considers L(p, q) := L(p; 1, q) = S3/Zp with (ζ; z1, z2) 7→ (ζz1, ζ

qz2)

3. Note that the projection map π : S2n−1 −→ L(m; `1, . . . , `n) is a covering map, because
the Z/mZ-action is free.

We now want to consider CW structures on lens spaces that generalize the CW structures
on projective spaces.

Observation 2.13.5.
1. We start with a CW structure on S1 that has m zero cells {e 2πij

m , 1 6 j 6 m} and m one
cells.

2. Let B2n−2
j be the subset of Cn

B2n−2
j := {cos θ(0, . . . , 0, e

2πij
m ) + sin θ(z1, . . . , zn−1, 0)|

0 6 θ 6 π/2, (z1, . . . , zn−1) ∈ S2n−3},

i.e., we connect the point (0, . . . , 0, e
2πij
m ) with all the points (z1, . . . , zn−1) ∈ S2n−3 via

quarters of a circle. Thus we obtain a space homeomorphic to a (2n−2)-dimensional disc,
B2n−2
j

∼= D2n−2. A calculation shows that B2n−2
j ⊂ S2n−1.
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3. If we connect all points on the circular arc in S1 between e
2πij
m and e

2πi(j+1)
m with S2n−3,

again via quarters of a circle, we get a (2n−1)-dimensional ball B2n−1
j contained in S2n−1

with boundary
∂B2n−1

j = B2n−2
j ∪B2n−2

j+1 . (∗)

The two boundary discs B2n−2
j and B2n−2

j+1 are attached to each other via their common

boundary S2n−3. Thus B2n−1
j looks like a (2n−1)-dimensional lens. The union of all B2n−1

j

is S2n−1.

4. We have to understand the Z/mZ-action % on these cells. It restricts to the subspace

S2n−3, i.e. %(S2n−3) ⊂ S2n−3. The arcs between the points e
2πij
m and e

2πi(j+1)
m on S1 are

permuted by % and therefore % permutes the (2n − 2)-dimensional balls B2n−2
j and the

(2n− 1)-dimensional balls B2n−1
j .

For any r ∈ N with r`n = 1 mod m, the map %r has order m as well and

%r|B2n−2
j

: B2n−2
j −→ B2n−2

j+1 ,

because
ζr`ne

2πij
m = e

2πir`n
m e

2πij
m = e

2πi(j+1)
m .

Thus, %r identifies the two faces of B2n−1
j , cf. (∗). Each of the balls B2n−1

j is a fundamental
domain of the %r-action. Thus

L ∼= B2n−1
j /%r

for any j = 1, . . . ,m.

5. There is a natural inclusion

L(m; `1, . . . , `n−1) ⊂ L(m; `1, . . . , `n)

which is given by mapping the class [(z1, . . . , zn−1)] to [(z1, . . . , zn−1, 0)]. Representing
the (2n − 3)-dimensional lens space L(m; `1, . . . , `n−1) as B2n−3

j / ∼, we see that we can

build L(m; `1, . . . , `n) out of L(m; `1, . . . , `n−1) by attaching the (2n− 1)-cell B2n−1
j and a

(2n− 2)-cell B2n−2
j . Note that we really just have to take one of the latter, because B2n−2

j

is identified with its neighbour B2n−2
j−1 in the quotient.

Inductively we get a cell structure of L with one cell in each dimension up to 2n− 1.

Example 2.13.6.
For n = 2, the lens spaces are quotients of S3. Let m = 5 and `1 = 1 and `2 = 2, so ζ = e

2πi
5 .

Then the B3
j are 3-balls with boundary B2

j and B2
j+1. The 2-balls B2

j consist of elements

cos θ(0, e
2πij
5 ) + sin θ(z, 0) for z ∈ S1 and 0 6 θ 6 π

2
; these are the two-dimensional discs

(sin θz, cos θe
2πij
5 ) ∈ S3 ⊂ C2 .

Observation 2.13.7.

1. Let us consider the cellular chain complex of the lens spaces. In Observation 2.13.5.5, we
constructed a CW structure such that

C∗(L) = Z, ∗ = 0, . . . , 2n− 1 .

Let σk be the cell corresponding to the ball Bk
j . We need to compute the boundary maps.
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2. The top cell has trivial boundary,

d(σ2n−1) = σ2n−2 − σ2n−2 = 0

because the topological boundary of B2n−1
j is the union of two balls one dimension lower

which are identified in the quotient.

3. The boundary of the cell σ2n−2 is S2n−3 and the attaching map is the quotient map

S2n−3 −→ L(m; `1, . . . , `n−1) .

The action % permutes the cells cyclically, and we get degree m:

d(σ2n−2) = mσ2n−3 .

By induction we see that the boundary maps are given by multiplication by zero respec-
tively m. Thus the homology of the lens space is the homology of the cellular complex

0→ Z 0−→ Z m−→ Z 0−→ . . .
m−→ Z 0−→ Z→ 0

and thus

H∗(L(m; `1, . . . , `n)) =


Z, ∗ = 0, 2n− 1,

Z/mZ, ∗ odd and < 2n− 1,

0, otherwise.

Note that we also get H1(L) = π1(L) = Z/mZ from covering theory because π1(S2n−1) = 0
for n > 2 and thus S2n−1 is a universal cover of L.

4. As the top homology group is Z, Theorem 2.6.11 implies that lens spaces are compact
connected orientable manifolds of dimension 2n− 1.

The universal coefficient theorem 2.2.5 immediately gives for cohomology with coefficients
in Zm:

Lemma 2.13.8.
The additive cohomology groups are

H∗(L;Z/mZ) ∼=

{
Z/mZ, for all degrees 0 6 ∗ 6 2n− 1

0, ∗ > 2n− 1.

Note that the homology groups of L with coefficients in Z/mZ are isomorphic to the coho-
mology groups just by using the universal coefficient theorem 1.14.17

Hk(L;Z/mZ) ∼= Hk(L;Z)⊗ Z/mZ⊕ Tor(Hk−1(L),Z/mZ)

or by applying Poincaré duality 2.8.3, since L is compact and orientable.
We now focus on the case when m = p is a prime.

Proposition 2.13.9.
Let L = L(p; `1, . . . , `n+1) be a lens space. Denote by α ∈ H1(L;Z/pZ) and β ∈ H2(L;Z/pZ)
(additive) generators. The cohomology group Hj(L;Z/pZ) is then generated by{

βi, for j = 2i

αβi, for j = 2i+ 1.
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Proof.
We prove the claim by induction on n.

• For n = 1, we have a three-dimensional lens space L = L(p; `1, `2). If α ∈ H1(L;Z/pZ)
and β ∈ H2(L;Z/pZ) are generators, then a cup product pairing argument from Lemma
2.11.4 shows that α∪β is a generator in degree three. We have to understand what α2 is:
if p is odd, then by the graded symmetry of the cup product, we have α2 = 0. For p = 2
we know that the lens space is RP 3. In this case, by Corollary 2.11.6, α2 is a generator
of H2(L,Z/2Z). Thus, it is equal to β. In all other degrees, the cohomology groups are
trivial.

• Assume now that the claim is true up to degree n. We consider the inclusion

L(p; `1, . . . , `n) ↪→ L(p; `1, . . . , `n+1) =: L2n+1.

Up to degree 2n−1 this inclusion gives rise to an isomorphism on cohomology groups. We
know that βi generates the cohomology groups up in even degrees j = 2i < 2n−1 and αβi

generates the cohomology groups in odd degrees j = 2i+ 1 6 2n− 1. An argument as for
projective spaces, cf. Lemma 2.11.5, then shows that β∪βn−1 generates H2n(L2n+1;Z/pZ)
and β ∪ αβn−1 = αβn generates H2n+1(L2n+1;Z/pZ).

�

Corollary 2.13.10.

1. As graded rings

H∗(L(p; `1, . . . , `n+1);Z/pZ) ∼=

{
Λ(α)⊗ Z/pZ[β]/βn+1, p > 2,

Z/pZ[α]/α2n+2, p = 2.

2. Fix a prime p and a sequence (`1, `2, . . .) of integers coprime to p. Let L denote the direct
limit of any system of the form

L(p; `1, . . . , `n+1) ⊂ L(p; `1, . . . , `n+2) ⊂ . . .

then

H∗(L;Z/pZ) ∼=

{
Λ(α)⊗ Z/pZ[[β]], p > 2,

Z/pZ[[α]], p = 2.

Proof.
The second claim follows with the help of the Milnor sequence 2.12.8 as in Example 2.12.9. �

Remark 2.13.11.
Note that these cohomology groups do not dependent on the `i’s.

Lens spaces of dimension three give rise to important examples of orientable connected and
compact 3-manifolds that have the same fundamental group and homology groups, but that are
not homotopy equivalent. For instance the lens spaces L(5; 1, 1) and L(5; 1, 2) are not homotopy
equivalent (cf. Hatcher, exercise 3.E.2), but have the same fundamental groups and the same
homology groups.
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Observation 2.13.12.
We can interpret the generator β in terms of the so-called Bockstein-homomorphism.

The two short exact sequences of abelian groups

0→ Z ·p→ Z ρ→ Z/pZ→ 0 and 0→ Z/pZ ·p→ Z/p2Z→ Z/pZ→ 0

give rise to short exact sequences of cochain complexes

0→ S∗(X;Z)→ S∗(X;Z)→ S∗(X;Z/pZ)→ 0
0→ S∗(X;Z/pZ)→ S∗(X;Z/p2Z)→ S∗(X;Z/pZ)→ 0

and we get by Lemma 1.5.6 a corresponding long exact sequences of cohomology groups. Let

β̃ : Hn(X;Z/pZ)→ Hn+1(X;Z)

be the connecting homomorphism for the first sequence, let

β : Hn(X;Z/pZ)→ Hn+1(X;Z/pZ)

be the connecting homomorphism for the second sequence and let

ρ∗ : H
n+1(X;Z)→ Hn+1(X;Z/pZ)

be induced by the reduction of the coefficients mod p. Then β is called the
Bockstein homomorphism.

Lemma 2.13.13.
For all n, the diagram

Hn(X;Z/pZ)
β̃ //

β

))

Hn+1(X;Z)

ρ∗
��

Hn+1(X;Z/pZ)

commutes.

Proof.
For the proof just note that the diagram relating the two short exact sequences

0 // Z ·p //

ρ

��

Z
ρ2
��

ρ // Z/pZ

id
��

// 0

0 // Z/pZ ·p // Z/p2Z // Z/pZ // 0

commutes and therefore we obtain the commutativity of the connecting homomorphisms, the
naturality statement of Proposition 1.5.5, implies

Hn(X;Z/pZ)
β̃ //

id
��

Hn+1(X;Z)

ρ∗
��

Hn(X;Z/pZ)
β // Hn+1(X;Z/pZ).

�

With the help of this auxiliary result we will show that the class β ∈
H2(L(p; `1, . . . , `n+1);Z/pZ) in Proposition 2.13.9 is the image of the Bockstein homomorphism
applied to α, i.e. β = β(α). We discuss the example p = 2, i.e. the cases of real projective spaces
of odd dimension in detail; the cases for odd prime are similar.
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Proposition 2.13.14.
The Bockstein homomorphism β : Hn(RP∞;Z/2Z) → Hn+1(RP∞;Z/2Z) is an isomorphism
for odd n and is trivial for even n. In particular, β(α) = α2.

Proof.
Consider the diagram

Hn+1(RP∞;Z)

·2
��

Hn(RP∞;Z/2Z)
β

))

β̃ // Hn+1(RP∞;Z)

ρ∗
��

·2 // Hn+1(RP∞;Z)

Hn+1(RP∞;Z/2Z)

β̃
��

Hn+2(RP∞;Z)

• If n is odd, then n + 1 = 2k for some k and then H2k(RP∞;Z) ∼= Z/2Z so that the
multiplication by 2 is trivial. The horizontal exact sequence then implies that β̃ is surjec-
tive. But both adjacent groups are Z/2Z, thus β̃ is an isomorphism, since any surjective
endomorphism of Z/2Z is an isomorphism.

• For even n, the groups Hn+1(RP∞;Z) are trivial, hence in these degrees β̃ = 0, and also
the Bockstein homomorphism β = ρ∗ ◦ β̃ vanishes for even n.

• The same fact implies that for odd n, the lowest arrow in the exact column is zero. Thus
ρ∗ : H

n+1(RP∞;Z) → Hn+1(RP∞;Z/2Z) is surjective and, by the same arguments, an
isomorphism and therefore β is an isomorphism.

�

Remark 2.13.15.
Using that β is a connecting homomorphism and thus defined using a coboundary, one can use
the Leibniz rule 2.5.10.3 to show that it is a derivation with respect to the cup product:

β(α ∪ γ) = β(α) ∪ γ + (−1)|α|α ∪ β(γ).

The Bockstein homomorphism is one example of a cohomology operation.

2.14 A first quick glance at homotopy theory

The definition of a fundamental group has an obvious generalization:

Definition 2.14.1
Denote by I := [0, 1] the standard interval and by In ⊂ Rn the n-dimensional unit cube.

1. For a space X with base point x0 ∈ X, we denote by πn(X, x0) set of homotopy classes
of maps

F : (In, ∂In)→ (X, x0) ,
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where homotopies are required to satisfy Ft(∂I
n) = x0 for all t ∈ [0, 1]. (For n = 0, take

I0 to be a point and ∂I0 = ∅ so that π0(X) is the set of path-connected components of
X.)

2. For a subset A ⊂ X and a base point x0 ∈ A, take for n > 1 the subset In−1 ⊂ ∂In

the points with last coordinate sn = 0; they are homeomorphic to an (n− 1)-dimensional
cube. Finally let Jn−1 be the closure of the complement ∂In \ In−1. Then πn(X,A, x0) is
the set of homotopy classes of maps

(In, ∂In, Jn−1)→ (X,A, x0) .

Observation 2.14.2.

1. Generalizing the case of the fundamental group n = 1, we turn πn(X, x0) into a group
with composition defined by operations involving the first coordinate,

(f + g)(s1, s2, . . . , sn) :=

{
f(2s1, . . . , sn) for s1 ∈ [0, 1

2
]

g(2s1 − 1, . . . , sn) for s1 ∈ [1
2
, 1]

This is well-defined on homotopy classes; since only the first coordinate is involved, the
same arguments as for the fundamental group show that we obtain a group structure.
The group πn(X, x0) is called the n-th homotopy group of X.

2. A sequence of homotopies shows that for n > 2, the group πn(X, x0) is abelian. Note that
for this process, we only need the two coordinates s1, s2.

Similar arguments as for the fundamental group show that the different base points yield
isomorphic homotopy groups. Indeed, the fundamental group π1(X, x0) acts on all groups
πn(X, x0); for n = 1 this is the inner action of π1(X, x0) on itself.

3. In the relative case, the last coordinate sn plays a special role. For this reason, πn(X,A, x0)
has the structure of a group only for n > 2. It is abelian for n > 3. We call it the
relative homotopy group. (The set π1(X,A, x0) is the set of homotopy classes of paths in
X from a varying point in A to the base point x0.)

Familiar features of the fundamental group can be extended:

Observation 2.14.3.

1. A covering (X̃, x̃0) → (X, x0) induces an isomorphism p∗ : πn(X̃, x̃0) → πn(X, x0) for
n > 2.

Indeed, injectivity follows from [Topologie, 2.7.13] and surjectivity from the fact that the
maps In → X factorize to maps Sn → X and that Sn is simply connected for n > 2.

2. As a consequence, πn(X, x0) with n > 2 vanishes for all spaces X with a contractible
cover, e.g. the sphere S1 with cover R or the torus T n with cover Rn. Such spaces are
called aspherical.

3. Base-point preserving maps of pairs ϕ : (X,A, x0) → (Y,B, y0) give rise to maps ϕ∗ :
πn(X,A, x0)→ πn(Y,B, y0). They obey the familiar relations id∗ = id and (f◦g)∗ = f∗◦g∗.
Homotopic maps ϕ, ϕ′ : (X,A, x0)→ (Y,B, y0) give the same maps in relative homotopy,
ϕ∗ = ϕ′∗.

4. We have for arbitrary products πn(
∏

αXα) =
∏

α πn(Xα).
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5. Given an imbedding i : A→ X and a base point x0 ∈ A, one gets a long exact sequence

. . . πn(A, x0)
ι∗→ πn(X, x0)

j∗→ πn(X,A, x0)
∂→ πn−1(A, x0)→ . . .→ π0(X, x0)

of homotopy groups. Here j : (X, x0, x0) ↪→ (X,A, x0) and and ∂ comes from restricting
maps (In, ∂In, Jn−1)→ X to In−1.

6. There is, however, no general analogue of the excision property for homology or the
Seifert-van Kampen theorem for the fundamental group, see however Theorem 2.14.8.
This makes homotopy groups difficult to compute, even for spheres.

However, homotopy is theoretically important, because it gives strong invariants, in partic-
ular for CW complexes:

Theorem 2.14.4 (Whitehead).
If a map f : X → Y between connected CW complexes induces isomorphisms f∗ : πn(X) →
πn(Y ) for all n > 0, then f is a homotopy equivalence.

In the case when f is the inclusion of a subcomplex with the same property, then X is even
a deformation retract of Y .

The proof is based on the following

Lemma 2.14.5 (Compression lemma).
Let (X,A) be a CW pair and let (Y,B) be any pair with B 6= ∅. Assume that for each n such
that X \ A has cells of degree n, we have πn(Y,B, y0) = 0 for all y0 ∈ B. Then every map
f : (X,A) → (Y,B) is homotopic relative A to a map X → B, i.e. we can homotop the map
such that the image is in B ⊂ Y .

Proof.
Assume inductively that f has been homotoped to take the skeleton Xk−1 to the subspace B.
Let φ be the characteristic map of a k-cell ek of X \ A. The composition

f ◦ φ : (Dk, ∂Dk)→ (Y,B)

can be homotoped relative ∂Dk into B, since we assumed πk(Y,B, y0) = 0 for all y0 ∈ B.
This homotopy induces on the quotient space

Xk−1 t Dk → Xk−1 ∪φ ek

a homotopy relative Xk−1. We do this for all k-cells of X\A at once, take the constant homotopy
on A and get a homotopy of the restriction f |Xk∪A to a map into B.

Inductively, we settle the case when the dimension of the cells of X \ A is bounded. In
general, deal with Xk during the t-interval [1− 2−k, 1− 2−(k+1)]. �

Proof.
of Whitehead’s Theorem 2.14.4.

• First suppose that f is the inclusion of a subcomplex. Consider the long exact sequence
2.14.3.5 for the pair (Y,X). Since f induces isomorphisms on the homotopy groups,
the relative homotopy groups πn(Y,X) vanish. Applying Lemma 2.14.5 to the identity
(Y,X)→ (Y,X) yields a deformation retraction of Y onto X, as claimed.

133



• Now consider the mapping cylinder Mf of f : X → Y : this is the quotient

X × I t Y →Mf

under the identification (x, 1) ∼ f(x). Thus Mf contains X = X×{0} and Y as subspaces.
Mf deformation retracts to Y . Thus f is a composition

X ↪→Mf → Y

of an inclusion and a retraction. A retraction is a homotopy equivalence; thus it suffices
to show that Mf retracts onto X, if f induces isomorphisms on the homotopy groups (or,
equivalently, if all relative groups πn(Mf , X) vanish).

• If f happens to be cellular, then (Mf , X) is a CW pair and we are done by the first part of
the proof. In the general case, one can invoke a theorem that f is homotopic to a cellular
map.

�

Remarks 2.14.6.

1. We do not claim that any two CW complexes with isomorphic homotopy group are homo-
topy equivalent; rather the existence of a map f inducing the isomorphisms in homotopy
is required.

As a counterexample, consider X = RP 2 and Y = S2 × RP∞. Both have fundamental
group Z2; their universal covers are X̃ = S2 and Ỹ = S2 × S∞ which are homotopy
equivalent, since S∞ is contractible. Thus Observation 2.14.3.1 implies that the homotopy
groups are all isomorphic.

But the two spaces cannot be homotopy equivalent, since their homology differs: since
Y = S2 × RP∞ retracts to RP∞, it has non-vanishing homology in infinitely many
components, in contrast to X.

2. There is a CW complex, unique up to homotopy, which has the property that it has a
single non-vanishing homotopy group G in degree n. Such a space K(G, n) is called an
Eilenberg-Mac Lane space. (The group G has to be abelian for n > 1.)

Cohomology classes for a CW complex X correspond bijectively to homotopy classes of
maps X → K(G, n): for any abelian group G and for all CW complexes X, there is for
n > 0 a natural bijection

T : [X,K(G, n)]→ Hn(X;G) .

More precisely, there is a distinguished class α ∈ Hn(K(G, n);G) such that T (f) = f ∗(α).
This is a strong link between homotopy theory and cohomology theory.

3. For CW complexes, we can replace maps within the same homotopy class by cellular maps:
every map f : X → Y of CW complexes is homotopic to a cellular map. If f is already
cellular on a subcomplex A ⊂ X, then the homotopy may be taken to be stationary on
the subcomplex A.

As a consequence, πn(Sk) = 0 for n < k. Indeed, with with usual CW structure on spheres
consisting of a 0-cell and a top-dimensional cell, cf. Example 1.11.4.3, and the 0-cells as
base points, any map Sn → Sk can be homotoped fixing the based point to a cellular map
which is thus constant.
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We finally state a generalization of Proposition 1.3.8 which relates homotopy groups to
homology groups:

Theorem 2.14.7 (Hurewicz).
If a space X is (n−1)-connected with n > 2, i.e. if πi(X) = 0 for all i 6 n−1, then H̃ i(X) = 0
for i 6 n− 1 and πn(X) = Hn(X).

Thus the first nonzero homotopy and homology group of a simply-connected space occur in
the same degree and are isomorphic.

We finally explain the best available analogue of excision:

Theorem 2.14.8.
Let X be a CW complex that is decomposed as the union of subcomplexes A and B with
non-empty connected intersection C := A ∩B. Suppose that (A,C) is n-connected and (B,C)
is m-connected, with m,n > 0. Then the map

πi(A,C)→ πi(X,B)

induced by the inclusion is an isomorphism for i < m+ n and a surjection for i = m+ n.

This yields

Corollary 2.14.9 (Freudenthal suspension theorem).
The suspension map

πi(Sn)→ πi+1(Sn+1)

is an isomorphism for i < 2n − 1 and a surjection for i = 2n − 1. More generally, this holds
for the suspension πi(X)→ πi+1(ΣX) of any (n− 1)-connected CW complex X. (Note that by
Remark 2.14.6.3 X = Sn is (n− 1)-connected.)

Proof.
Decompose the suspension ΣX as the union of two cones C±X intersecting in a copy of X.
Inclusion gives us by Theorem 2.14.8 a morphism

πi+1(C+X,X)→ πi+1(ΣX,C−X) (∗) .

The long exact sequence for (C+X,X)

. . .→ πi(X)→ πi(C+X)→ πi(C+X,X)→ πi−1(X)→ πi−1(C+X)→ . . .

together with the fact that the cone C+X is contractible shows for the left hand side of (∗) the
isomorphism πi+1(C+X,X) ∼= πi(X). The long exact sequence for (ΣX,C−X)

. . .→ 0 = πi(C−X)→ πi(ΣX)→ πi(ΣX;C−X)→ πi−1(C−X) = 0→ . . .

shows that πi+1(ΣX,C−X) ∼= πi+1(ΣX).
Now suppose that X is (n− 1)-connected. Then the first long exact sequence implies that

the pairs (C±X,X) are n-connected. By Theorem 2.14.8 the inclusion map is an isomorphism
for i+ 1 < 2n and surjective for i+ 1 = 2n.

�

Corollary 2.14.10.
We have πn(Sn) ∼= Z for all n > 1, with the identity map as a generator. In particular, the
degree provides an isomorphism πn(Sn)→ Z.
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Proof.
From Corollary 2.14.9, we know that in the suspension sequence

π1(S1)→ π2(S2)→ π3(S3)→ . . .

the first map is surjective and all other maps are isomorphisms. Since π1(S1) is infinite cyclic,
generated by the identity map, it follows that all other groups πn(Sn) are finite or infinite cyclic
groups generated by the identity map.

The group cannot be finite: there exist base-point preserving maps Sn → Sn of arbitrary
degree, cf. Lemma 1.10.3 for a weaker statement, and the degree is a homotopy invariant.

The degree map is an isomorphism, since the map z 7→ z of S1 has degree 1 and so do by
Lemma 1.10.3 its iterated suspensions. �

A English - German glossary

English German
boundary Rand
chain complex Kettenkomplex
chart Karte
cone Kegel
connecting homomorphism Verbindungshomomorphismus
cycle Zykel
excision Ausschneidung
hairy ball theorem Satz vom gekämmten Igel
lens space Linsenraum
manifold Mannigfaltigkeit
skeleton Gerüst
support Träger
suspension Einhängung
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Čech cohomology, 116

abelianization, 12
acyclic complex, 2
affine simplex, 28
Alexander-Whitney map, 92
antipodal map, 43
aspherical space, 146
atlas, 96
attaching map, 46
axioms of a cohomology theory, 85

barycentric subdivision, 26
Betti number, 122
Bockstein homomorphism, 143
boundary, 1
boundary operator, 1, 7

cell, 45
cell decomposition, 45
cellular chain complex, 57
cellular map, 50
chain, 1
chain complex, 1
chain homotopy, 3
chain homotopy equivalence, 4
chain map, 2
characteristic map, 46
chart, 96
closed manifold, 122
closure finite condition, 46
coboundary operator, 77
cochain complex, 77
cofibration, 53
cohomology cross product, 90
cohomology group, 77, 78
cohomology group with compact support, 105
compact-open topology, 51
cone, 26, 39
connecting homomorphism, 20
cup product pairing, 125
cup-product, 91
CW complex, 45
CW pair, 48
cycle, 1

deformation retract, 24

degree, 41
degree of a map, 104
diagonal approximation, 92
diagram chase, 20
diameter, 28
differential, 1
dimension, 96
dimension axiom, 85
direct limit, 107
direct sum, 4
direct system, 107
directed poset, 107
directed system, 107

Eilenberg-Mac Lane space, 148
Eilenberg-Zilber theorem, 76
euclidean neighborhood retract, 116
exact sequence, 18
excision, 32
external cup product, 90

face map, 5
fibration, 53
finite CW complex, 46
five-lemma, 35
free abelian group, 6
free chain complex, 68
free resolution, 65
front face, 86
fundamental class, 34, 103

Hairy Ball theorem, 44
homology cross product, 73
homology group, 2
homotopy extension property, 53
homotopy group, 145
homotopy lifting property, 53
Hurewicz-homomorphism, 12

intersection form, 126
inverse limit, 129
inverse system, 129

Kronecker pairing, 79

lens space, 138
locally Euclidean space, 96
long exact sequence, 18
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manifold, 97
map of cochain complexes, 78
Milnor sequence, 135
Mittag-Leffler condition, 131

orientable manifold, 98
orientation, 98

paracompact, 54
Poincaré duality map, 112
polyhedron, 47

rear face, 86
reduced homology, 36
relative boundary, 22
relative chain, 22
relative chain complex, 22
relative cycle, 22
relative homology group, 22
relative homotopy group, 146
relative Mayer-Vietoris sequence, 36

short exact sequence, 18
simplex, 4
simplicial complex, 47
simplicial map, 48
singular n-cochains with compact support, 105
singular chain complex, 7
singular chain module, 6
singular cochain group, 78
singular simplex, 5
skeleton, 48
standard resolution, 65
subcomplex, 48
suspension, 40
suspension isomorphism, 40

tensor product, 62
topological Künneth formula, 76

universal coefficient theorem, 68

vertex, 28

weak retract, 23
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