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1 Homology theory

We recall a few facts about the fundamental group:

e [t assigns to any path connected topological space X with a base point x € X an algebraic
object, a group (X, x). The assignment is functorial, i.e. for a continuous map f : X —
Y we get a group homomorphism f, : (X, z) — m (Y, f(z)). Homotopic maps f ~ g
induce the same maps on the fundamental group, f, = ¢..

e The fundamental group is computable invariant, most notably due to the theorem of
Seifert-van Kampen.

e The invariant crucially enters in covering theory: if a topological space X is sufficiently
connected, the equivalence classes of path-connected coverings are classified by conjugacy
classes of subgroups of m (X).

e However, for CW complexes, it is insensitive to n-cells with n > 3. As a consequence, it
cannot distinguish spheres S™ for different n > 2.

A possible remedy is to consider continuous maps ™ — M, with I = [0, 1], up to homo-
topy relative boundary. But the corresponding homotopy groups 7, (M) are difficult to
compute, even for spaces as fundamental as spheres. For example, for the 2-sphere 7, (S?)
is non-zero, although the 2-sphere does not have cells in dimensions greater than 2.

Homology is a computable algebraic invariant that is sensitive to higher cells as well; but it
takes some effort to define it. In particular, we will have rather huge objects in intermediate
steps to which we turn now:

1.1 Chain complexes
Homology is defined using algebraic objects called chain complexes.
Definition 1.1.1

A chain complex is a sequence of abelian groups, (Cy)nez, together with homomorphisms
dy,: C, = C,_1 forn € Z, such that d,,_; od,, = 0.

Let R be an (associative) ring with unit 1z. A chain complex of R-modules can analogously
be defined as a sequence of R-modules (C),)nez with R-linear maps d,,: C,, — C,,_1 such that
dn,1 o dn = 0.

Definition 1.1.2
We fix the following terminology:

e The homomorphisms d,, are called differentials or boundary operators.

e The elements x € C,, are called n-chains.

e Any x € C, such that d,x = 0 is called an n-cycle. We denote the group of n-cycles by
Zn(C) :=ker(d,) = {z € Cy, | dyx = 0}.

e Any x € C,, of the form x = d,, .1y for some y € C, 1 is called an n-boundary.
B, (C) = Im(dpt1) = {dns1y,y € Cpya}
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The cycles and boundaries form subgroups of the group of chains. The identity d,, o d,, 41 = 0
implies that the image of d,,. is a subgroup of the kernel of d,, and thus

B,(C) C Z,(C).

We often drop the subscript n from the boundary maps and just write C, for the chain
complex.

Definition 1.1.3
The abelian group H,(C) := Z,(C)/B,(C) is called the nth homology group of the complex
Cs.

We denote by [¢] € H,(C) the equivalence class of a cycle ¢ € Z,(C). If ¢, € C,, are such
that ¢ — ¢’ is a boundary, then ¢ is said to be homologous to ¢. This defines an equivalence
relation on chains. A complex is called acyclic, if its homology except in degree 0 vanishes.

Examples 1.1.4.

1. Consider the complex with

On:{Z n=20,1

0 otherwise

Here, the only non-zero differential is d;; let it be the multiplication with N € N, then

Z/NZ n=0

0 otherwise.

H,(C) = {

2. Take C,, = Z for all n € Z and consider differentials

. {idZ n odd

0 n even.

The homology of this chain complex vanishes in all degrees.

3. Consider C,, = Z for all n € Z again, but let all boundary maps be trivial. The homology
of this chain complex equals Z in all degrees.

We need morphisms of chain complexes:

Definition 1.1.5
Let C, and D, be two chain complexes. A chain map f: C, — D, is a sequence of homomor-
phisms f,: C, — D,, such that d? o f,, = f,_1 0dS for all n, i.e., the diagram

dC
n
On - Cn— 1

fn\j lfn—l
dD

n
Dn > anl

commutes for all n.

A chain map f sends cycles to cycles, since

dPf.(c) = fo1(dSc) =0 for a cycle ¢ ,
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and boundaries to boundaries, since
fn(dgﬂ)‘) = dr?—l—lfn-i-l()‘) :
We therefore obtain an induced map of homology groups
H,(f): H,(C) — H,(D)

via Hy(f)[e] = [fnc].

Examples 1.1.6.
1. There is a chain map from the chain complex mentioned in Example [I.1.4]1 to the chain
complex D, that is concentrated in degree zero and has Dy = Z/NZ.

NEN

Ly

Note that (fp). is an isomorphism on the zeroth homology group; all homology groups
are isomorphic.

2. Are there chain maps between the complexes from Examples|1.1.412. and 37

Lemma 1.1.7.
If f: C. — D, and g: D, — E, are two chain maps, then H,(g) o H,(f) = H,(g o f) for all n.

We next study situations in which two chain maps induce the same map on homology.
Definition 1.1.8

A chain homotopy H between two chain maps f,g: C, — D, is a sequence of homomorphisms
(Hp)nez with H,,: C,, — D,y such that for all n

d5+1 oH,+ Hy 10 df = fn = n-

<y <y ¢ dg_,
e Chy1 o Cn
Hpq1 H Hyp—y
n fn+1£ )/gn%\c )Ml )gnl
d5+2 D d5+1 D dp D ap_,
e Lnta n n—1

If such an H exists, then the chain maps f and g are said to be (chain) homotopic. We
write f ~ g.

We will see in Section [1.4] geometrically defined examples of chain homotopies.

Proposition 1.1.9.
1. Being chain homotopic is an equivalence relation on chain maps.

2. If f and g are homotopic, then H,(f) = H,(g) for all n.

Proof.
1. If H is a homotopy from f to g, then —H is a homotopy from ¢ to f. Each chain map f
is homotopic to itself with chain homotopy H = 0. If f is homotopic to g via H and g is
homotopic to h via K, then f is homotopic to h via H + K.
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2. We have for every cycle ¢ € Z,(C,):

H,(f)le] = Hu(g)lc] = [fnc — guc] = [dg—i-l o Hy(c)] + [Hp-10 dg(c)] = 0.
Here, the class of the first term vanishes; in the second term d<c = 0, since c is a cycle.

g

Definition 1.1.10

Let f: C, — D, be a chain map. We call f a chain homotopy equivalence, if there exists a
chain map ¢g: D, — C, such that go f ~id¢, and f o g >~ idp,. The chain complexes C, and
D, are said to be chain homotopically equivalent.

Chain homotopically equivalent chain complexes have isomorphic homology. However, chain
complexes with isomorphic homology do not have to be chain homotopically equivalent, cf.
Example [1.1.61: there is no non-zero morphism of abelian groups Zy — Z.

Definition 1.1.11
If C, and C! are chain complexes, then their direct sum, C, ® C, is the chain complex with

CiaC),=C,C, =C, xCl
with differential d = d & d’' given by

de(c,d) = (de,d'd).

Similarly, if (Cij ), d");cs is a family of chain complexes, then we can define their direct
sum as follows:

(D =Py
jeJ JjeJ

as abelian groups and the differential dg is defined via the property that its restriction to the
jth summand is d\@).

1.2 Singular homology

In the definition of the fundamental group, we test a topological space X by (homotopy classes
of) maps S' — X. In the definition of singular homology, we use maps from higher-dimensional
objects, simplices.

Let v, ...,v, be n+ 1 points in R™™!. Consider the convex hull

K(Uo, .. 7’Un) = {th?}zl th = ]_,tz 2 0} C Rn+1.
=0 =0

Definition 1.2.1
If the vectors vy — vy, ..., v, — vy are linearly independent, then K (vy,...,v,) is the simplex
generated by vy, ...,v,. We denote such a simplex by simp(vy, ..., v,).

Note that simplex really means “simplex with an ordering of its vertices”.
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Example 1.2.2.
1. Denote by e¢; € R™™! the vector that has an entry 1 in coordinate ¢ + 1 and is zero in all
other coordinates. The standard topological n-simplex is A" := simp(ey, .. ., €,).

2. The first examples of standard topological simplices are:
o A is the point g =1 € R.
e Al is the line segment in R? between ¢y = (1,0) € R? and e; = (0,1) € R%

e A? is a triangle in R?® with vertices eg,e; and e, and A3 is homeomorphic to a
tetrahedron.

3. The coordinate description of the standard n-simplex in R"*! is

A" ={(to,. ., tn) €R™|Y "t; =1,4; > 0}.
=1

We consider the standard simplex A" as a subset A” C R**! c R"*2 C .. ..

The boundary of A! consists of two copies of A’, the boundary of A? consists of three
copies of Al. In general, the boundary of A" consists of n 4 1 copies of A"~

We describe the boundary by the following (n + 1) face maps for 0 < i < n

dz' = d?ili Anil — An, (to, R ,tnfl) — (to, ey b, O,ti, R ,tnfl).
The image of 7! in A" is the face that is opposite to the vertex e;. It is the (n—1)-simplex
generated by the n — 1-tuple e, ..., €;_1,€i41,..., e, of vectors in R,

Lemma 1.2.3.
Concerning the composition of face maps, the following rule holds:

i todi P =d)  odl T, forall0<j<i<n.
Example: face maps for AY and composition into A?: dy o dy = dy o d;.
Proof.
Both expressions yield

d?_l o) d?_Q(tm ce ,tn_g) = (t(), ce ;tj—h 0, tj cee ,ti_g, O, ti—la cee 7tn—2>
= &N (o, tea).

Definition 1.2.4
Let X be an arbitrary topological space, X # (). A singular n-simplex in X is a continuous
map a: A" — X.

Note, that « is just required to be continuous. (It does not make sense to require it to be
smooth. We do not require « to be injective either.) In comparison to the definition of the
fundamental group, note that we do not identify simplices and we do not fix a base point.

We want to be able to express the idea that the boundary of a 1-simplex, i.e. of an interval,
is the the difference of its endpoints. To this end, we have to be able to add and subtract
0-simplices.

We recall some algebraic notions:



Remark 1.2.5.
1. Any abelian group A can be seen as a Z-module with n.a :== a+ ...+ a for n € N and
n—times
a € A and (—n).a := —n.a. Thus, abelian groups are in bijection with Z-modules. An
abelian group A is called free over a subset B C A, if B is a Z-basis, i.e. if any element
a € 7 can be uniquely written as a Z-linear combination of elements in B.

2. The group Z" is free abelian with basis {ey,...,e.} with ¢; = (0,...,0,1,0,...,0). The
group Zs is not free, since it does not admit a basis: the vector 1 € Zs is not free since
2-1=0.

3. A free abelian group F' with basis B can be characterized by the following universal
property: any map f: B — A of sets into an arbitrary abelian group A can be extended
uniquely to a group homomorphism h: F' — A, i.e. h(b) = f(b) for all b € B,

Homge; (B, A) = Homg, o, (F, A) .
4. Any subgroup of a free abelian group F'is a free abelian group of smaller rank.
Definition 1.2.6

Let X be a topological space. Let S, (X) be the free abelian group generated by all singular
n-simplices in X. We call S,,(X) the n-th singular chain module of X.

Remarks 1.2.7.
1. Elements of the singular chain group S, (X) are thus sums )., \jo; with \; € Z and
A; = 0 for almost all i € I and «;: A™ — X a singular n-simplex. All sums are effectively
finite sums.

2. For all n > 0 there are non-trivial elements in S, (X), because we assumed that X # {):
we can always chose a point g € X and consider the constant map x,,: A" — X as a
singular n-simplex «. By convention, we define S, (&) = 0 for all n > 0.

3. By the universal property [1.2.53, to define group homomorphisms from S, (X) to some
abelian group, it suffices to define such a map on generators.

Example 1.2.8.
Let X be any topological space. As an example, we compute Sy(X): a continuous map a: A —
X is determined by its value a(eyg) =: z, € X, which is a point in X. A singular 0-simplex
> ier Micy; can thus be identified with the formal sum of points )., Aiza, with ; € Z.

Such objects appear in complex analysis: counting the zeroes and poles of a meromorphic
function with multiplicities then this gives an element in Sy(X). In algebraic geometry, a divisor
is an element in Sp(X).

Definition 1.2.9
Using the face maps d;'* : A"~ — A" from Example .3, we define a group homomorphism
0;: Sp(X) — S,_1(X) on generators by precomposition with the face map

8Z(oz) = o d?_l

and call it the ith face of the singular simplex «.

On S, (X), we thus get by Z-linear extension 0;(>_; Aja;) = > Aj(a; 0 dr1).
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Lemma 1.2.10.
The face maps on S, (X) satisfy the simplicial relations

8j08i:8i_108j, O<]<Z<n

Proof.
The relation follows immediately from the relation

ditod!? =di  odf?, forall 0<j<i<n

in Lemma [1.2.3l O

Definition 1.2.11
We define the boundary operator on singular chains as 0: S, (X) — S,—1(X) as the alternating

sum d =Y i (—1)'0;.

Lemma 1.2.12.
The map 0 is a boundary operator, i.e. o d = 0.

Proof.
This is an immediate consequence of the simplicial relations in Lemma [1.2.10)

—_

n— n

000 = (-1)'0;)° O (-1 ZZ 1)%79; 0 0;

j:O =0
= Y (-1, oa+ > (=190
o<y<isn 0<i<y<n—1
N (C)Mo 00+ Y. (1) 00, =0,
0<j<i<n 0ig<ysn—1
U

We therefore obtain for a topological space X a complex of (free) abelian groups,
Lo 5 (X) -5 S (X) S L s D Sy(X) =0,

the singular chain complex, S,(X). We abbreviate the group Z,(S.(X)) of cycles by Z,(X),
the group B, (S.(X)) of boundaries by B, (X) and the n-th homology group H,(S.(X)) by
H,(X).

Definition 1.2.13
For a space X, the abelian group H, (X) is called the nth singular homology group of X.

Example 1.2.14.
1. Note that all 0-chains are 0-cycles, Zy(X) = So(X).

2. The boundary of a 1-chain o : A — X is
Jda=aody—aod =ale;) — ale)

which justifies the name “boundary”.



3. To find an example of a 1-cycle, consider a 1-chain ¢ = a+ 8 + 7, where we take singular
I-simplices a, 8,7: Al — X such that a(e;) = B(eg), B(e1) = Y(eg) and y(e1) = alep).
Calculate o = gy — O1v = a(e1) — afep) and similarly for § and 7 to find dc = 0. This
motivates the word “cycle”.

We need to understand how continuous maps of topological spaces interact with singular
chains and singular homology.

Definition 1.2.15
Let f: X — Y be a continuous map. The map f, = S,(f): Su(X) — S,(Y) is defined on
generators a: A" — X by postcomposition

fn(oz):fooz:A”%XLY.

Lemma 1.2.16.
For any continuous map f: X — Y we have commuting diagrams

Su(X) —L2 5,(Y)

o
S (X) 55,4 (Y),

i.e. (fu)nez is a chain map and hence induces by the remarks following Definition [1.1.5 a map
H,(f): H,(X) — H,(Y) of the homology groups.

Proof.
By definition, we have for a singular n-simplex « : A™ — X by the associativity of the compo-
sition of maps

n n

0" (fal@)) =D (=1)(foa)odi=> (=1)'fo(aod) = fo1(0*a).

=0 =0

Remarks 1.2.17.

1. The identity map on X induces the identity map on H,(X) for all n > 0 and if we have
a composition of continuous maps

x Ly 4z
then S,,(go f) = S,(g9) o S,(f) and thus H,(go f) = H,(g) o Hu(f).

2. In categorical language, this says precisely that S,(—) and H,(—) are functors from
the category of topological spaces and continuous maps into the category of abelian
groups. Taking all S,,(—) together turns S,(—) into a functor from topological spaces
and continuous maps into the category of chain complexes of abelian groups with chain
maps as morphisms.



3. One implication of Lemma|1.2.16|is that homeomorphic spaces have isomorphic homology
groups:
X=Y=H,(X)=H,(Y) for all n > 0.
In Theorem [1.4.7] we will see the stronger statement that homotopic maps induce the
same morphism in homology.

Our first (not too exciting) calculation is the following:

Proposition 1.2.18.
The homology groups of a one-point space pt are trivial but in degree zero,

0, ifn>0,
HAM)Q{Z ifn=0

Proof.
For every n > 0 there is precisely one continuous map «: A™ — pt, the constant map. We
denote this map by x,. Then the boundary of k,, is

- . - ) Kn_1, N even
aﬁn::E:(—1yﬂnodi::E:(—1yﬁn_1::{ ’ ’
P = 0, n odd.

For all n we have S,(pt) = Z generated by k,, and therefore the singular chain complex looks
as follows:

00 g5 ey 020 5 g

cf. Example [1.1.412. O

1.3 The homology groups Hj, and H;

We start with the following observation:

Proposition 1.3.1.
For any topological space X, there is a homomorphism e¢: Hy(X) — Z with ¢ # 0 for X # @.

Proof.

e If X # @ we have a unique morphism X — pt of topological spaces which induces by
Lemma a morphism of chain complexes S,(X) — S.(pt). It maps any 0-simplex
a: A = X to

A3 X —pt,

the generator of Hy(pt), the constant map kg : A® — pt, cf. Proposition [1.2.18

e [t is instructive to show directly that the map
£€: S()(X) — 7

with &(«) = 1 for any generator a: A® — X, thus (3, ; hici) = D, A on So(X) gives
a well-defined map on homology. (As only finitely many A; are non-trivial, this is in fact
a finite sum.)



Let So(X) 3 ¢ = 0b be a boundary and write b = ", ; v;4; with ;: A’ = X and a finite
set I. Then we get

8b=02m5iZZVi(ﬁiodo—ﬂiodﬁ ZZViﬁiOdo—ZViﬁioch

iel il iel iel
and hence
Ee) =&(0b) => 1;— Y v =0
il iel

We said that Sy(9) is zero, so Ho(2@) = 0. In this case, we define ¢ to be the zero map.
If X # @, then any singular O-simplex a: A° — X can be identified with its image point,
so the map & on Sp(X) counts points in X with multiplicities.

Proposition 1.3.2.
If X is a path-connected, non-empty space, then ¢: Ho(X) — Z.

Proof.

1. As X is non-empty, there is a point x € X and the constant map «, with value = is an
element in So(X) with e(k,) = 1. Therefore, the group homomorphism ¢ is surjective.

2. For any other point y € X there is a continuous path w: [0,1] — X with w(0) =  and
w(1) = y. We define a singular 1-simplex a,,: A! = X as

ag,(to, t1) = w(l —tg)

for to +t1 = 1, 0 < to,tl < 1. Then
8(aw) = 80(aw) - al(aw) = aw(el) - aw(eﬂ) = aw(0> 1) - aw(la O) = Ry — Rg,

and the two singular O-simplices k,, K, in the path connected space X are homologous.
This shows that € is injective.

0
Note that in the proof, we associated to a continuous path w in X from x to y a 1-simplex
a,, on X with doy, = Ky — K. In the sequel, we will identify them frequently.

Corollary 1.3.3.
If X is a disjoint union, X = | |,.; Xj, such that all X; are non-empty and path-connected, then

Hy(X) = Pz

This gives an interpretation of the zeroth homology group of X: it is the free abelian group
generated by the path-components of X.

Proof.
The singular chain complex of X splits as the direct sum of chain complexes of the X;:

S.(X) = @ S.(x,)

i€l
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for all n. Boundary summands J; stay in a component, in particular,

0: S1(X) = P S1(Xi) = P So(Xy) = Sp(X)

icl icl

is the direct sum of the boundary operators 0: Si(X;) — So(X;) and the claim follows from
Proposition [1.3.2 U

Next, we relate the homology group H; to the fundamental group ;. To this end, we see
continuous paths w in X as 1-simplices a,, as in the proof of Proposition [1.3.2

Lemma 1.3.4.
Let wq,ws, w be paths in a topological space X.

1. Constant paths are null-homologous.

2. If wi(1) = wy(0), we can define the concatenation wy * wy of w; followed by ws. Then
O swy — Oy, — Qi 18 @ boundary.

3. If w1(0) = wa(0),wi(1) = wa(1) and if wy is homotopic to wy relative to {0, 1}, then ay,,
and a,, are homologous as singular 1-chains.

4. Any 1-chain of the form ags., is a boundary. Here, w(t) := w(1 — t).

Proof.

1. Denote by ¢, the constant path on z € X. Consider the constant singular 2-simplex
alto, t1,t2) = x. Then o = ¢, — ¢p + Cp = Cp.

2. We define a singular 2-simplex 3: A? — X on X as follows.

€9
Wy *xw Wy

€o w1 €1

We define 8 on the boundary components of A? as indicated and prolong it constantly
along the sloped inner lines. Then

0f=Pody—Pod +fody=wy—wy *xwy+ wi.

3. Let H:[0,1] x [0,1] = X a homotopy from w; to wy. As we have that H(0,¢) = w;(0) =
wy(0), we can factor H over the quotient [0, 1] x [0,1]/{0} x [0,1] = A? with induced map
h: A* — X. Then
Oh=hody—hody + hods.

The first summand is null-homologous by 1., because it is constant (with value w;(1) =
wo(1)), the second one is wy and the last is wy, thus w; — wy is null-homologous.
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4. Consider a singular 2-simplex v: A? — X as indicated below.

w(1) w

€o w €1

Definition 1.3.5

Let X be path-connected and x € X. Let h: m(X,x) — Hi(X) be the map, that sends the
homotopy class [w],, of a closed path w to its homology class [w]| = [a,|n,. This map is called
the Hurewicz-homomorphism. E|

Lemma 3 ensures that h is well-defined and by Lemma [1.3.4]2

B([wr][wa]) = h[wr % wa]) 2 fun] + wa] = h((un]) + h([wn))

thus A is a group homomorphism. For a closed path w we have by Lemmal[l.3.4]4 that (] = —[w]
n H1 (X)

Recall that the commutator subgroup [G,G] of G is the smallest subgroup of a group G
containing all commutators [g, h] := ghg='h™" for all g, h € G.

It is a normal subgroup of G: If ¢ € [G,G], then for any g € G the element gcg~'c™
commutator and also by the closure property of subgroups the element gcg='c™!
in the commutator subgroup [G, GJ.

Lis a
c=gcgtis

Definition 1.3.6
Let G be an arbitrary group, then its abelianization, Gy, is the quotient group G /|G, G].

Remark 1.3.7.
The abelianization comes with a projection G — G,;,. It can be characterized by the universal
property that any group homomorphism G — A with A abelian factorizes uniquely as

G——A
|
Gab

Proposition 1.3.8.
Let X be a path-connected non-empty space. Since H;(X) is abelian, the Hurewicz homomor-
phism factors over the abelianization of m; (X, z). It induces an isomorphism

m(X, )y = Hi(X) ,

1.e.

>

m (X, )

» =~
hab

(X, 2)ap = (X, 2) /[m1(X, ), 11 (X, )]
I'Witold Hurewicz: 1904—1956.

Hy(X)
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Proof.

e We construct an inverse ¢ to h,p. To this end, choose as an auxiliary datum for any point
y € X a path u, from the base point = to y. For the base point x itself, we take u, to be
the constant path on x.

Let a be an arbitrary singular 1-simplex and let y; := «(e;). Define
b S1(X) = m(X,T)w

on the generator o of S;(X) as the class of the closed path ¢(a) = [uy, * Wy * Ty,] and
extend ¢ linearly to all of S;(X), keeping in mind that the composition in 7 is written
multiplicatively.

e We have to show that gz~5 is trivial on boundaries, so let : A? — X a singular 2-simplex.
Then

$(0B) = d(Body—Bodi+ Body) =d(Body)d(Bod) ' d(Body).

Abbreviating 5 o d; with «a;, we get as a result
_ _ 11 _ . _ _ _
[y, * Qg 3 Ty |[Uyy * Q1 % Uy |7 [Uyy ¥ Q2 % Uy | = [Uyy * Qg % Uy, * Uy * Qg ¢ Uy % Uy * O ¥ Uy -

Here, we have used that the image of ¢ is abelian. We can reduce the paths Uy, * Uy, and
Uy, * Uy, and are left with [w,, * ag * o * a7 * Uy, but ag* ap* @ is the closed path tracing
the boundary of the singular 2-simplex § and therefore it is null-homotopic in X. Thus
é(aﬁ) — 1 and ¢ passes to a map

¢: Hi(X) = m(X,2)ap -
e The composition ¢ o h,y, evaluated on the class of a closed path w gives

¢ 0 hap|W]r, = Plw]h, = [Ug * W * Ug|r, -

But we chose u, to be constant, thus ¢ o h,, = id.

If ¢ =Y Ny is a 1-cycle, then h,,o¢(c) is of the form [c+ Dy.| where the Dy -part comes
from the contributions of the u,,. The fact that d(c) = 0 implies that the summands in
Dp. cancel off and thus hyy, o ¢ = idg, (x).

g

Note that abelianization of an abelian group is the group itself: G = G,,. Whenever the
fundamental group is abelian, we thus have H;(X) = m (X, ).

Corollary 1.3.9.
Standard results on the fundamental group m; yield explicit results for the following first ho-

mology groups:
Hl(Sn):O, for n > 1, Hl(Sl) EZ,

Hi(S'x...xShH=z",

H(S'VSY Y (Z%Z), 2 ZDZ,

Z, if n=1,

Hy(RP") =
1 ) {Z/ZZ, for n > 1.

13



1.4 Homotopy invariance

The main goal of this section is to show that two continuous maps that are homotopic induce
identical maps on homology groups.

Observation 1.4.1.

e Let a: A" — X a singular n-simplex; consider two homotopic maps f,g: X — Y. The

homotopy
H:Xx[0,1] =Y

from f to g induces a homotopy
A" x [0,1] X x x[0,1] B Y

from f o« to goa. This is a map with codomain A™ x [0, 1], i.e. from a prism over A™.
From this geometric homotopy, we want to obtain a chain homotopy from the chain map
S(f) to the chain map S(g) of singular chain complexes.

e To that end we have to cut the (n+1)-dimensional prism A" x [0, 1] into (n+1)-simplices.
In low dimensions this is intuitive:

— The one-dimensional prism A® x [0, 1] is homeomorphic to the standard 1-simplex
Al

— The two-dimensional prism A! x [0,1] 2 [0,1]* (which has the shape of a square)
can be cut in two triangles, i.e. into two copies of the standard 2-simplex AZ.

— A? x [0,1] is a 3-dimensional prism and that can be glued together from three
tetrahedrons, e.g. like

In general, we compose the (n + 1)-dimensional prism A™ x [0, 1] from n + 1 copies of the
standard simplex A"

Definition 1.4.2
For a given n € Ny, define n + 1 injections

Di: AL AP X [O, 1]
(tos - tug1) = ((tos .- tict, ti Ftign, tivo, ooy tnga), i + oo F taga)

with i = 0,...,n. These are (n+ 1)-simplices on the prism on the topological space A™ x [0, 1].

14



Remark 1.4.3.
e The image of the standard basis vectors e, with k =0,1,...n+ 11is

(ex,0), for 0 < k <14,
piler) = .
(ex—1,1), for k > 1.

For example, in the case n = 1, we have

Po| € + €o P1|€ + €o
e — €9+ e e1 — €
€y = €1+ e9 €y H— e1+eq

e For all n > 0, we obtain n + 1 group homomorphisms
Pt Su(X) = St (X % [0,1))
fori =0,1,...n which is defined on a generator o : A" — X of S,,(X) via precomposition:
P(a)=(axid)op;: A™! 2y A" [0,1] 25 X x [0,1].

e For k=0,11let ji: X — X x [0,1] be the inclusion z — (z, k).

Lemma 1.4.4.
The group homomorphisms P; satisfy the following relations:

1. 0y o Py = S,(j1) as group homomorphisms S, (X) — S,(X x [0, 1]).
2. an+1 o Pn - Sn(]O)a
3. 3io]:’¢:8io}3i_1for1<i<n.

4.

8jof)i: Piof)j_l, fOI'Zgj—2
P,_100;, fori>j+1.

Proof.
e For the first point, note that for a: A" — X, 0y o Py(«x) is the singular n-simplex

AP 2 AT P An 10, 1] S X x [0, 1] .

The composition of the first two maps on A™ evaluates to

n

po o dolto, .. ta) = po(0,to, ... tn) = ((toy - - tn), > i) = (o, ., tn), 1)

1=0

and thus the whole map equals
S,(i)(a): A" S X I X x [0,1]
e Similarly, we compute

Pn © dn+1(t0, e ,tn) = pn(to, e ,tn, 0) = ((to, e ,tn), 0)
and deduce 0,41 0 P, = S,.(Jo)-

15



e For the third identity, one checks that p;, o d; = p;_1 o d; on A™ both give
((tos -+ tn), D5 tj) on (to, ... ).

e For d) in the case i > j + 1, consider the following diagram

A P A" < [0,1]

/

A"
Pi—1

A1 0,1 225 An [0, 1]

Checking coordinates one sees that this diagram commutes: both give
((to, ce 7tj_1, 07 ce ti—l + tz‘, ce tn), Z;L:Z t]) on (to, PN ,tn)

The remaining case follows from a similar observation.

Definition 1.4.5
For each n > 0, we define a group homomorphism

P: Su(X) = Spet(X x [0,1])

as the alternating sum P =" (—1)'P;.

Lemma 1.4.6.
The group homomorphisms P provide a chain homotopy between the chain maps S(jo), S(j1) :
Se(X) — Su(X x [0,1]), i.e. we have for all n

doP+Pod=S,(j1) — Su(jo) -

Proof.
We evaluate the left hand side on a singular n simplex a: A” — X and find from the definitions
n n+l n—1 n
OPa+ Poa =Y > (-1)™"9;Pa+> > (1) Poja.
i=0 j=0 i=0 j=0

If we single out the terms involving the pairs of indices (0,0) and (n,n + 1) in the first sum,
we are left with by Lemma 1 and 2.

n—1 n
S00@ —S@+ Y (CHaPat Y Y (1) PP
(i)j)7é(070)7(n7n+1) =0 5=0

Using Lemma we see that only the first two summands survive: the terms in the first
sum with ¢ = j and ¢ = j — 1 cancel by Lemma [1.4.413. The remaining terms cancel by the
same mechanism as in the proof of Lemma [1.2.12 O

So, finally we can prove the main result of this section:
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Theorem 1.4.7 (Homotopy invariance).
If f,g: X — Y are homotopic maps, then they induce the same map on homology.

Proof.
Let H: X x [0,1] = Y be a homotopy from f to g, i.e. Ho jo = f and H o j; = g. Set

n+1(H)

K,:=S5,.1(H)oP: S,(X) it Spr1(X x [0,1]) Snr1(Y) .

We claim that (K,), is a chain homotopy between the two chain maps (S,(f)), and (S,(g))n-
Note that H : X x I — Y induces a chain map (.S, (H)),. Therefore we get

doSp1(H)oP+S,(H)oPod=S5,(H)odoP+S,(H)oPod [Se(H) is a chain map]

Kn anl

Sp(H)o (0o P+ Pod)

= Su(H) o (S, () ~ ()
Sn(H oyl) Sy (H o jo)

Sn(g) = Su(f)-

Hence the two chain maps S(f) and S(g) are chain homotopic; by Proposition [1.1.9/2, we have

H,(g9) = H,(f) for all n. O

Corollary 1.4.8.
1. If two spaces X, Y are homotopy equivalent, then H,(X) = H,(Y).

2. In particular, if X is contractible, then

7, f =0
Ho(X) = , for x |

0, otherwise.
Examples 1.4.9.

1. Since R" is contractible for all n, the above corollary implies that its homology is trivial
but in degree zero where it consists of the integers.

2. As the Mobius strip is homotopy equivalent to S!, we know that their homology groups
are isomorphic.

3. The zero section of a vector bundle induces a homotopy equivalence between the base
and the total space, hence these two have isomorphic homology groups.

1.5 The long exact sequence in homology

In a typical situation, we have a subspace A of a topological space X and might know some-
thing about A or X and want to calculate the homology of the other space using that partial
information.

Before we can move on to topological applications, we need some algebraic techniques for
chain complexes. We need to know that a short exact sequence of chain complexes gives rise to
a long exact sequence in homology.

Definition 1.5.1
17



1. Let A, B,C be abelian groups and
AL.p2.c

a sequence of homomorphisms. Then this sequence is exact, if the image of f equals the
kernel of g.

2. A sequence
fi—1

fit1 fi
LA Aiiq

of homomorphisms of abelian groups (indexed over the integers) is called (long) exact, if
it is exact at every A;, i.e. the image of f;11 equals the kernel of f; for all i.

3. An exact sequence of the form

0 A

is called a short exact sequence.

Examples 1.5.2.
1. The sequence
0—Z—2>7—"7,/27—0

is a short exact sequence.

2. The sequence

0—U——A

is exact, iff t: U — A is a monomorphism. The sequence
B—2-0Q——=0

is exact, iff p: B — @ is an epimorphism. Finally, ® : A — A’ is an isomorphism, iff the

sequence 0 A2 0 is exact.

3. A sequence
0—=A—LsB-2oCc— 0

is exact, iff f is injective, the image of f equals the kernel of g and ¢ is an epimorphism.

4. Another equivalent description is to view a long exact sequence as a chain complex with
vanishing homology groups. Homology measures the deviation from exactness.

Definition 1.5.3
If A,, B., C, are chain complexes and f,: A, — B, g«: B, — C, are chain maps, then we call

the sequence of chain complexes

exact, if the image of f, is the kernel of g, for all n € Z.

18



Thus such an exact sequence of chain complexes is a commuting double ladder

d d d
An+1 day Bn+1 At On+1
d d d
A,—Ll B, .,
d d d
A, Sfn—1 B, . gn—1 Cirir
d d d

in which every row is exact and where in the columns we have differentials, i.e. dod = 0.

Example 1.5.4.
Let p be a prime, then the diagram

0 0 0

7Z— 94 7 0 9

7Z—> 7 —">7/pL
T ™ id

Z/pZ——L/p*"Z—"~TL/pZ

0 0 0

has exact rows and columns. It is an exact sequence of chain complexes. Here, 7w denotes the
appropriate canonical projection map.

Proposition 1.5.5.

If 0 A, ! B, g C. 0 is a short exact sequence of chain complexes, then there exists
a homomorphism §,,: H,(C,) — H,_1(A,) for all n € Z which is natural, i.e. if

0—A Lop T

is a commutative diagram of chain complexes in which the rows are exact, then H,,_;(«)o0d, =

o, 0 Hy(7),
Hn(c*) o n—l(A*)
Hy(v) LHn1(a)

Hn(C!k) — nfl(A;)



The method of proof is an instance of a diagram chase. The homomorphism ¢, is called
connecting homomorphism.

Proof.
We show the existence of a § first and then prove that the constructed map satisfies the
naturality condition.

a) Definition of 0:
We work with the following maps:

B,>b—>scecC,

d

A saltapeB, 0

For ¢ € C,, with d(c) = 0, we choose a preimage b € B,, with g,b = c¢. This is possible
because g, is surjective. We know that dg,b = dc = 0 = g,,_1db thus db is in the kernel
of g,_1, hence it is in the image of f,,_;. Thus there is an a € A,_; with f,_1a = db. We
have that f,,_sda = df,,_1a = ddb = 0 and as f,_» is injective, this shows that a is a cycle.
We define d[c] := [a.

In order to check that ¢ is well-defined, we assume that there are two different preimages
b and V' with g,b = g,0' = c¢. Then g,(b — ) = 0 and thus there is an a € A, with
fna=0b—"V". Define o' :=a —da € A,_1. Then

fo1d = fu_1a — fu_1da = db — db+ db' = db

because f,,_1da = df,a = db — db'. As f,_; is injective, we get that a’ is uniquely deter-
mined with this property. As a is homologous to a’ we get that [a] = [a/] = 0[], thus the
latter is independent of the choice of the preimage b.

In addition, we have to make sure that the value stays the same if we add a boundary
term to ¢, i.e. take ¢’ = ¢ + dé for some ¢ € C,;,. Choose preimages of ¢, ¢ under the
surjective maps g, and g,1, i.e., b and b with ¢g,b = ¢ and gn+1b = ¢. Then the element
Y = b+ db has boundary db/ = db and thus both choices will result in the same a.

Therefore the connecting morphism §,,: H,(C\) — H,_1(A,) is well-defined.

b) We have to show that ¢ is natural with respect to maps of short exact sequences.

Let ¢ € Z,(C,), then d[c] = [a] for some b € B,, with g,b = ¢ and a € A, with
fn_1a = db. Therefore, H,, _1(a)(d[c]) = [an_1(a)].

On the other hand, we have

f;L—l(Oén—lfl) = Bn-1(fn-1a) = Bp_1(db) = dB,b
and
Q;L(ﬁnb) = Yngnb = e

and we can conclude that by the construction of the connecting homomorphism ¢’ in the
second long exact sequence

' (c)] = [an-1(a)]
and this shows 0’ o H, () = H,_1(a) 0 0.
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With this auxiliary result at hand we can now prove the main result in this section:

Proposition 1.5.6 (Long exact sequence in homology).
For any short exact sequence

f

0 A, B,—2-C, 0

of chain complexes we obtain a long exact sequence of homology groups

Ay D g ()Y g (o), (AN

Proof.

a)

Exactness at H,(B,):
We have H,,(g)o H,(f)[a] = [gn(fn(a))] = 0, because the composition of g,, and f,, is zero.
This proves that the image of H,,(f) is contained in the kernel of H,(g).

For the converse, let [b] € H,(B.) with [g,b] = 0. Since g,b is a boundary, there exists
¢ € Cpyq with de = g,b. As g,41 is surjective, we find a b’ € B, with g, 10’ = c. Hence

gn(b—dV') = g,b — dgns1b' = dc — dc = 0.
Exactness at B,, allows to find a € A,, with f,a = b — db’. Now
fno1(da) = dfp(a) =d(b—db') =db=0

since b is a cycle. The map f,,_1 is injective, thus da = 0. Therefore f,a is homologous to
b and H,(f)[a] = [b]. Thus the kernel of H,(g) is contained in the image of H,(f).
Exactness at H,(C\):

Let [b] € H,(By), then d[g,b] = 0 because b is a cycle, so 0 is the only preimage under
the injective map f,,_1 of db = 0. Therefore the image of H,(g) is contained in the kernel
of the connecting morphism ¢.

Now assume that d[c] = 0, thus in the construction of 4, the a is a boundary, a = dd’.
Then for a preimage b of ¢ under g,, we have by the definition of a

d(b — fud') = db — df,d’ = db — fo_1a = 0.

Thus b— f,ad' is a cycle and g, (b — fna') = g,b — gnfnd = .0 — 0 = g,b = ¢, so we found
a preimage for [c] under H,(g) and the kernel of § is contained in the image of H,(g).
Exactness at H,_1(A,):

Let ¢ be a cycle in Z,(C,). Again, we choose a preimage b of ¢ under g, and an a with
fn—1(a) = db. Then H,,_1(f)d[c] = [fu_1(a)] = [db] = 0. Thus the image of ¢ is contained
in the kernel of H,_1(f).

If a € Z,_1(A,) with H,_1(f)[a] = 0. Then f,,_1a = db for some b € B,,. Take ¢ = g,b.
Then by definition d6[c] = [al.

g
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1.6 The long exact sequence of a pair of spaces

Let X be a topological space and A C X a subspace of X.

Remarks 1.6.1.

1. Consider the inclusion map i: A — X, i(a) = a. We obtain an induced map of chain
complexes S, (i): S,(A) — S,(X). The inclusion of spaces does not have to yield a
monomorphism on homology groups. For instance, we can include A = S* into X = D?.
By Corollary [1.4.82, since D is contractible, we know that H, (D) = 0 for n > 1 and by
Corollary t H(SY) =Z.

2. Consider the quotient groups S, (X, A) := S, (X)/S.(A). Since d,(5,(A)) C S,-1(A), the
differential induces a well-defined map

dn  5,(X)/5n(A)

Cn + Sn(A)

Sn—l (X)/Snfl (A)

_>
— dn(Cn) -+ Sn,I(A>
that squares to zero.

3. Alternatively, S, (X, A) is isomorphic to the free abelian group generated by all n-simplices
f: A" — X whose image is not completely contained in A, i.e. S(A") N (X \ A) # @.

We consider pairs of spaces (X, A).

Definition 1.6.2
The relative chain complex of the pair (X, A) is

S«(X,A) == S.(X)/S.(A)
with the differentials described in Remark[1.6.112.

Definition 1.6.3
e Elements in S,,(X, A) are called relative chains in (X, A).

e Cycles in S, (X, A) are chains ¢ with 9% (c) a linear combination of generators with image
in A. These are called relative cycles.

e Boundaries in S, (X, A) are chains ¢ in X such that ¢ = 0*b+ a where a is a chain in A.
These are called relative boundaries.

The following facts are immediate from the definition:
1. Sp(X,2) = S,(X).
2. S,(X,X)=0.
3. Sp(XUX' X =S, (X).

Definition 1.6.4
The relative homology groups of the pair of spaces (X, A) are the homology groups of the
relative chain complex S,(X, A) from Definition [1.6.2;

H,(X, A) = H,(S.(X, A)).
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Theorem 1.6.5 (Long exact sequence for relative homology).

1. For any pair of topological spaces A C X we obtain a long exact sequence

2. For a map of spaces f: X — Y with f(A) C B C Y, we get an induced map of long
exact sequences

e (A Y g (X) s Hy (X, A) e Hy g (A) T

A map f: X =Y with f(A) C B is denoted by f: (X,A) — (Y, B).

Proof.
1. By definition of the relative chain complex S, (X, A) the sequence

S, (i)

0——=5,(A) L5, (X) 8. (X, A)——=0

is an exact sequence of chain complexes and by Proposition we obtain the long exact
sequence in the first claim.

2. For amap f: (X, A) — (Y, B) the diagram

0 —> S, (A) 5, (X) = 5, (X, A) —>0

lSn(fA) Sn(f) lsn(f)/sn(flA)

0——S,(B) L 5 (v)—T~ S, (Y, B) —0

commutes. We now use Proposition [1.5.5]

Example 1.6.6.
Consider the embedding
v Sl D

We obtain a long exact sequence
o H(STY = Hy(D") = Hy (DY, SY Y S H (ST = Hy (D7) = .

The disc D" is contractible and by Corollary we have H;(D") = 0 for j > 0. From the
long exact sequence we get that 6: H;(D",S" ') = H; ;(S*!) for j > 1 and n > 1.

Recall the following definitions:

Definition 1.6.7
1. A subspace : A — X is a weak retract, if there is a map r: X — A with r o1 ~ id4.
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2. A subspace t: A — X is a deformation retract, if there is a homotopy R: X x [0,1] — X
such that

(a) R(xz,0) =x for allx € X,
(b) R(z,1) € A for all z € X, and
(c) R(a,1) =a for all a € A.

Any deformation retract is a weak retract: take r := R(—,1) : X — A. Condition (c) then
amounts to r o ¢ = idy.

Proposition 1.6.8.
If i: A< X is a weak retract, then

Ho(X) 2 Hy(A) @ Hy(X, A), 0<n.

Proof.

From the defining identity of a weak retract r ot ~ id4, we get by Theorem that H,(r) o
H,(i) = H,(ida) = idg,(ay for all n. Hence H,(i) is injective for all n. This implies that
0— H,(A) Yy H,(X) is exact. Injectivity of H,,_1(7) yields that the image of 0: H,(X, A) —
H,_1(A) is trivial. Therefore, the long exact sequence of Theorem decomposes into short

exact sequences
Ha (4)

0— H,(A) == H,(X) = H,(X,A) =0

for all n. As H,(r) is a left-inverse for H,, (i) we obtain a splitting
H,(X) = Hy(A) & H, (X, A)

Indeed, we have a map

with inverse

H,(A)® H,(X,A) — H,(X)
([a], o) = Ha(i)a] + [d'] = Hu(ior)[d]
for any [¢'] € H,(X) with m.[a'] = [b]. The second map is well-defined: if [a”] is an-
other element with m.[a”] = [b], then [0’ — @"] is of the form H,(i)[a] because this element
is in the kernel of 7, and hence [a' —a"]— H,(ior)[a'—a"| = H,(i)[a]| — H,(ioroi)|a] is trivial. O]

Proposition 1.6.9.
For any @ # A C X such that A C X is a deformation retract, then

H,(i): Hy(A) =2 H,(X), H,(X,A)=0, 0<n.
Proof.
Consider the map r := R(—,1): X — A. Then R is a homotopy from idx to i o . The third

condition defining a deformation retract can be rewritten as r o ¢ = idy, i.e. r is a retraction.
Together, this implies that A and X are homotopically equivalent and by Corollary H, (i)
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is an isomorphism for all n > 0. U

Definition 1.6.10
If X has two subspaces A, B C X, then (X, A, B) is called a triple, if B C A C X.

Any triple gives rise to three pairs of spaces (X, A), (X, B) and (A, B) and accordingly we
have three long exact sequences in homology. But there is another long exact sequence:

Proposition 1.6.11.
For any triple (X, A, B), there is a natural long exact sequence

. ——H, (A, B)—=H,(X, B)—=H,(X,A)—>H, (A, B)—

This sequence is part of the following braided commutative diagram displaying four long exact
sequences

(A, B) H, +(

> s
N \/ N
e

.

In particular, the connecting homomorphism ¢: H, (X, A) — H,_1(A, B) is the composite
0= 7T£A’B) o §X:A4),

Proof.
Note that S,,(B) C S,(A) C S,(X); by the homomorphism theorem, the sequence
0——=5,(A)/S,(B)—=5,(X)/S(B)—=S5,(X)/S,(A)—=0.

is exact. Now apply Proposition to obtain the long exact sequence. O

1.7 Excision

The aim is to simplify relative homology groups. Let A C X be a subspace. Then it is easy to
see that H,(X, A) is not isomorphic to H,(X \ A): Consider the figure eight as X and A as the

point connecting the two copies of S!.
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e X \ A has two connected components. By Corollary we have Hy(X \ A) X Z D Z.

e Any z € X\ Ais a generator for the group of 0-cycles. Since the space X is path connected,
it is homologous to the point @ € A and thus vanishes in relative homology. The group
Ho(X, A) is trivial.

So if we want to simplify the relative homology group H, (X, A) by excising something, then
we have to be more careful. The first step towards that is to make singular simplices 'smaller’.
The technique is called barycentric subdivision; it is a tool that is frequently used.

First, we construct cones. Let v € AP and let a: A™ — AP be a singular n-simplex on AP.

Definition 1.7.1
The cone of o : A™ — AP with respect tov € AP is the singular (n+1)-simplex K, (a): A" —
AP

(1= tnr)a(3 o ) H b, o < 1,

(th s 7tn+1) — {

v, tn+1 = ]_

This map is well-defined and continuous. On the standard basis vectors K, gives K, (e;) = a(e;)

for 0 <i < n but K,(e,+1) = v. Extending K, linearly gives a map on chain groups
K,: Su(AP) — S, 1(AP).

Lemma 1.7.2.
The map K, satisfies:

1. For ¢ € Sp(AP), the boundary of the cone K,(c) is the 0-chain
OK,(c) =¢(c).ky — ¢
with k,(eg) = v and € the augmentation as introduced in Proposition [1.3.1]
2. For n > 0 we have that o K, — K, 0 0 = (—1)"*!id.

Proof.
1. For a singular O-simplex a: AY — AP we know that ¢(a) = 1 and we calculate

K, () (en) = Ku() o do(eo) — Ko(a) 0 di(eo) = Ky(a)(er) — Ko(a)(eo) = v — a(eo).
Extending linearly shows the claim.

2. For n > 0 we have to calculate 0, K, («) and it is straightforward to see that 0,1 K,(a) = «
and 0;(K,(a)) = K,(0;x) for all 0 <7 <mn+ 1.

g

Definition 1.7.3

For an n-simple a: A" — AP on AP, choose as the additional vertex the barycenter v(a) =
vi= —5 > ale;) of the vertices. The barycentric subdivision B: S, (A”) = S, (AP) is defined
inductively as B(a) = « for a € So(AP) and B(«a) = (—1)"K,(B(d«a)) for n > 0. Forn > 1

this equals B(a) = Y"1 ,(—=1)""' K, (B(d;a)).
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If we take n = p and o = idan, then for small n this looks as follows: You cannot subdivide

a point any further. For n = 1 we get

\

And for n = 2 we get (up to tilting)

Lemma 1.7.4.
The barycentric subdivision is a chain map

B: S.(AP) — S.(AP).

Proof.
We have to show that 0B = B0.

e If a is a singular zero chain, then the fact Ba = « from the definition implies 0Ba =

Ja =0 and Bda = B(0) = 0.
e Let n = 1. Then by Definition
0Ba = —0K,B(0ya) + 0K, B(0«).

But the boundary terms are zero chains on which B is the identity, so we get with Lemma

L721
—OK () + 0K, (01a) T2 —k, + dpax + Ky — Oy = Do = Boa.

In the last step, we used that B is the identity on the 0-chain Oa. Note, that the v is
v(a), not a v(d;a).

e We prove the claim inductively, so let a € S,,(AP). Then

dBa (—1)"0K,(Bda)

TZ22_1)n((~1)"Bda + K,0Bda)
" Boa + (—1)" K, Bdda = Boa.

Here, the first equality is by definition, the second one follows by Lemma|1.7.2/2 and then
we use the induction hypothesis and the fact that 90 = 0.

g

Our aim is to show that barycentric subdivision B does not change anything on the level of
homology groups and to that end we prove that the chain map B : S,(AP) — S.(AP) is chain
homotopic to the identity.

To this end, we construct 1, : S,(AP) — S,+1(AP) again inductively on generators as

Yola) :=0, Yn(a):=(—1)""K,(Ba —a —,_10a)

with v := =5 37" | a(e;) the barycenter.
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Lemma 1.7.5.
The sequence (1), is a chain homotopy from B to the identity on S,(AP).

Proof.
e For n = 0 we have 0v¢y = 0 and this agrees with B — id in that degree.

e For n =1, we get

def

Oy + 1o = Oy & (KB — K, — K1hyd) = 0K, B — 0K,

With Lemma [I.7.2]2 we can transform the latter to B + K, 0B — 0K, and as B is a
chain map, this equals B + K, BO — 0K,. In chain degree one B0 agrees with 0, thus this
reduces to

B+ K,0— 0K, = B — (0K, — K,0) "2° B —id.

e So, finally we can do the inductive step:

o, =(—1)"MOK,(B —id — 1,,_10)  [defn.]
=(—1)""MOK,B — (-1)"" 0K, — (=1)"" 0K 1p, 10

=(-1)""((-1)""'B+ K,0B)  [Lemma [1.7.2]2]
— (=" ((=1)"*"id + K,0) [Lemma m2]

- (_1)n+1((_1)n+1,¢n—18+Kv8¢n—1a) 2]

=B —id — ,,_10 + remaining terms
The equation
KyOtbn_10 + Kothy_20® = Ky (0hp_1 + thn_20)0 "= K,BO — K,0

from the inductive assumption ensures that these terms give zero.

Definition 1.7.6
A singular n-simplex a: A™ — AP is called affine, if

a(Z tie;) = Z tia(e;).

We abbreviate v; := a(e;), so a(d 1o tie;) = Y i tv; and we call the elements v; € AP the

vertices of a.

Definition 1.7.7
Let A be a subset of a metric space (X,d). The diameter of A is

sup{d(z,y)|z,y € A}

and we denote it by diam(A).
Accordingly, the diameter of an affine n-simplex o in AP is the diameter of its image, and
we abbreviate that with diam(c«).
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Lemma 1.7.8.
For any affine singular n-simplex « every simplex in the chain Ba has diameter < nLHdiam(a).

Thus barycentric subdivision of affine simplices decreases the diameter. Either you believe
this lemma, or you prove it, or you check Bredon, Proof of Lemma 13.7 (p. 226).

Each simplex in the chain Ba is again affine; this allows us to iterate the application of B
and get smaller and smaller diameter of individual simplices. Thus, the k-fold iteration, B*(«),

has diameter at most (nLH)k diam(o).
In the following we use the easy, but powerful trick to express the singular n-simplex « :
A" — X as
a = Qoo ldAn = Sn(()é)(idAn) s

i.e. as the image of an n-simplex on A™. This allows us to use the barycentric subdivision for
general spaces: note that ida,, : A™ — A" can be seen as an n-simplex on A". To this simplex, we
can apply barycentric subdivision to get a chain B(ida») € S,(A™). Now a singular n-simplex
on X is a map o : A" — X and thus gives rise to a morphism of abelian groups

Sn(a) : Sp(A™) = S, (X) .
Therefore, S, (a)B(A,) € S,(X).

Definition 1.7.9
1. We define BX: S,(X) — S,(X) as

BX(a) := S,(a) o B(idan).
2. Similarly, ¥ : S,(X) — Sp41(X) is defined as

Uy (@) = Saya(a) ot (idan).

Lemma 1.7.10.
1. The maps BX are natural in X , i.e. for any map X Ly of topological spaces the

diagram
S.(X) £ 5.(X)
S*(f)j S+ (f)
S.(V) -2 S,(Y)
commutes.
2. The maps

BX : S.(X) — S.(X)
are homotopic to the identity on S, (X).

Proof.

29



e Let f: X — Y be a continuous map. We have
Su(f) By (@) =Su(f) 0 Su(e) 0 Blidan)
=S, (f o) o B(idan)
=B, (foa) =By Su(f)(a).

In the first step, we used the definition of B:X; in the second step the functorality of

n

S,(—=). In the last step, we used the definition of S, (f). Thus the maps BX are natural
in X.

e The calculation for 9y, + ;X 0 = B;X — idg, (x) uses that a induces a chain map and
thus we get

O () L 9 0 Spia(a) 0 alidan) T TE T S, () 0 0 iy (idan).
Hence

(O + 4 10)(a) = Sp(a) 0 (00, (idar) + y—1 0 O(idan))

1.7.5

== S,(a)o (B —id)(ida») = BX(a) — a.
U

Now we consider singular n-chains that are spanned by ’small’ singular n-simplices. Here,
“smallness’ is defined in terms of an open covering.

Definition 1.7.11

Let st = {U;,i € I} be an open covering of X. Then S*(X) is the free abelian group generated
by all singular n-simplices o.: A™ — X such that the image of A" under « is contained in one
of the open sets U; € L.

Note that S*(X) is an abelian subgroup of the singular chain group S, (X). The restriction
of the differential of S,,(X) gives a chain complex

o= SHX) = S (X)) =

We denote its homology by H¥(X). As we will see now, these chains suffice to detect everything
in singular homology.

Lemma 1.7.12.

1. For any subspace A C X, the barycentric subdivision of ¢ € S,,(A) is again in S, (A), i.e.
B¥(c) € S,(A).

2. If ¢ € S,(X) is a cycle relative A C X, then B(c) is a cycle relative A as well that is
homologous to ¢ relative A.

3. Let 4 be an open covering of X. Then every cycle in S, (X) is homologous to a cycle in

SH(X).

Proof.

1. This follows at once from the definition of barycentric subdivision.
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2. We note that the map 1, : S,(X) — Sp1(X) maps a € S,,(A) to ¥, (a) € Spi1(A).
Now consider for a relative cycle ¢ the equation. cf. [1.7.10/2

Be=c+ 1, 10c+ O,c .

Since ¢ is a relative cycle, dc € S,,_1(A) and by part 1, ¢, 10c € S, (A). Thus Bc is
homologous to ¢ relative A. Its boundary is

0Bc = 0c + O,_10c .
Thus Bc is a relative cycle as well.

3. Consider a singular n-chain o = 377" | A\ja; € S,(X) on X and let L; for 1 < j < m be
the Lebesgue numbers for the m coverings {aj_l(Ui),z' € I} of the simplex A". Choose k,
such that (niﬂ)k < Li,...,Ly. Then B*ay up to B*a,, are all chains in S¥(X). Therefore

Bf(a) = Z A B () =: o/ € SY(X).

From part 2, we know that B« is a cycle as well that is homologous to a.

We conclude:

Corollary 1.7.13.
For any open covering i, the injective chain map

SY(X) — S.(X)

induces an isomorphism in homology, HY¥(X) = H,(X).

n

Proof.
The map on homology is surjective, since for any cycle ¢ € 5,(X), we find by Lemma .3
a homologous cycle ¢ € SH(X).

The map is injective as well: suppose ¢ € S¥(X) is a boundary in S,(X), i.e. ¢ = de with
e € Sp41(X). Find k € N such that B*(e) € S, (X) and

Bk(e) —e= 1;”_1(06) + a&ﬂ(‘e) - 1;”_1(0) + 8&71(6) :

Thus 3
OB (e) — e = D1 (0)

is a boundary in S*(X). Thus,
¢ =de = d(B*(e) — p_1(c))

is a boundary in S¥(X) as well. O

We remark that this isomorphism actually comes from a homotopy equivalence of chain
complexes.
With this we get the main result of this section:
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Theorem 1.7.14 (Excision). )
Let W C A C X such that W C A. Then the inclusion i: (X \ W, A\ W) — (X, A) induces
an isomorphism of relative homology groups

Ho(i):  H (X \W,A\ W)= H,(X,A)

for all n > 0.

Proof.
e We first prove that H,(i) is surjective.

Let ¢ € S,(X,A) be a relative cycle, i.e. dc € S,_1(A). Consider the open covering
U= {4, X\ W} = {UV} of X. Now subdivide and find k such that ¢ := B¥¢ is a
chain in S¥(X). It follows from Lemma [1.7.12]2 that ¢ is homologous to ¢ relative A.
Decompose ¢ = ¢V + ¢” with ¢V and ¢ being chains on the corresponding open sets.
(This decomposition is not unique.)

The boundary of ¢ is ¢ = dB¥c = B*dc; by assumption this is a chain in S,_;(A).
Moreover, we find from the decomposition ¢ = ¢V + ¢

a¢ = oV +dc"

with oV € S,_1(U) C S,_1(A). Thus, dc¥ = dc — oV € S,_1(A). Since dcV € V is
supported in X \ W, we have dc¢V € S,_1(A\ W). Therefore, ¢V is a relative cycle in
Sp(X\ W, A\ W).
In H,(X, A), we find [c] = [¢] = [V + "] = [¢], where we used in the first step Lemma
[1.7.12]2. This shows that H,(i)[¢"] = [c] € H.(X,A). Thus [¢"] is a preimage of [c] in
Hy (X \ W, A\ W).

e The injectivity of H,(i) is shown as follows.
Assume that there exists ¢ € S, (X \ W) with dc € S,,_1(A\ W) such that H,(i)[c] = 0.
The last statement means that ¢ is of the form ¢ = 9b + a’ for some b € S, 1(X) and
a' € S, (A). We can choose all summands such that they avoid W.

We write b as bY + 0¥ with 0¥ € S,,11(U) C Sni1(A) and b” € S, 11 (V) C Spyr (X \ W).
Then

c=0bY + b +d.
Note that a’ and 9bY are chains in S,,(A\W). So we have written ¢ as a boundary of a chain
bV in S, (X \ W) plus a chain a’ +9bY in S,,(A\W). Thus [¢] =0 € H, (X \W, A\ W).

g

1.8 Mayer-Vietoris sequence

We consider the following situation: there are subspaces X;, Xo C X such that X; and X, are
open in X and such that X = X; U X,. We consider the open covering 4 = {X;, X5}. We need

the following maps:

Xy
X1N Xy X.
X %
X
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Note that by definition, the sequence of complexes

(#1,i2)

0—=5,(X1 N X5)—5,(X1) & S, (X)) —=SHX)——=0 (1)
is exact. Here, the second map is
(o, 0) = Ky(a) — ko).
Note that here the open sets are ordered to define the difference.

Theorem 1.8.1 (Mayer-Vietoris sequence).
There is a long exact sequence

o — 2 HL (X1 N Xo)——=Ho(X1) @ Hp(Xo)—=Hp(X)—2=H, 1 (X1 N X5)—. ..

Proof.
The proof follows from the exact sequence of chain complexes by Lemma |1.7.12, because

H¥(X) = H,(X), by Corollary [1.7.13 O

Observation 1.8.2.
1. As an application, we calculate the homology groups of spheres. Let X = S™ and let
X% 1= S™\{Femni1}. The subspaces X and X ~ are contractible and therefore H,(X*) =
0 for all positive x.

The Mayer-Vietoris sequence is as follows
o —LH, (XN X)) —H, (X 1) @ Hy(X ) —=H, (S™)—H, (XTNX")—. ..
For n > 1 we can deduce from H,(X*) =0

H,(S™ = H, (XtNX")~H, (S™1).

The first map is the connecting homomorphism ¢ and the second map is
H, 1(i): H,_1(S™') — H,_1(X* N X") where i is the inclusion of S™~! into X* N X~
and this inclusion is a homotopy equivalence. Thus define

D:=H, (i) 0d: H,(S™) — H,_1(S™1).
This D is an isomorphism for all n > 2.
We have to control what is going on in small degrees and dimensions.

2. We know from the Hurewicz isomorphism that H;(S™) is trivial for m > 1, cf. Corollary
1.3.9] Here, we show this directly via the Mayer-Vietoris sequence:

S Z 2 Hy(XYNX") = HyXY) @ Hy(X")2ZDZL

We have to understand the map in the second line. Let 1 be a base point of Xt N X,
Then the map on Hj is
[1] = ([1], [1).

This map is injective and therefore the connecting homomorphism §: H;(S™) — Ho(X TN
X ™) is zero. We find
H1<Sm) gO, m > 1.
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. We also compute H;(S') using a Mayer-Vietoris argument and consider the case of n =
1 = m. In this case, the intersection X+ N X~ splits into two components. We choose
base points P, € Xt and P_ € X . Consider the exact sequence

(Ho(i1),Ho(i2))

0—=H, (SH—2=Hy(X+ N X") Ho(XT) ® Ho(X ) —=Hy(SY)

which gives
0—=H(SH—">Z P Z—>7 S Z—>7.
The kernel of the last map, the difference of Hy(k;) and Hy(kz),
Ho(XT) @ Hyo(X ™) — Hy(Sh)

is spanned by ([P, ], [P-]) and thus isomorphic to Z. This is the image of (Hy(i1), Ho(i2)).
Therefore, the sequence

0—=H,(SH)—>Z & Z—>Z—0

~Y

is short exact; thus H;(S') 2 Z is a free abelian group of rank 1. We already knew this
from the Hurewicz isomorphism.

. We now combine the arguments.
e For 0 <n < m we get by applying D repeatedly,
Hn(Sm)—% n—l(Sm_1>i>- ' '_%>H1 (Sm—ntl) = Wl(Sm_"H).

and the latter is trivial by 2.

e Similarly, for 0 < m < n we have similarly
H,(S™)—=H,_1(S™ )=, —>H,_pn41(S") 2 0.

The last claim follows directly by another simple Mayer-Vietoris argument.

e The remaining case 0 < m = n gives a non-vanishing result:

Ho(S")—=>H, 1(S") .. —5H,(S) = Z.

We can summarize the result as follows.

Proposition 1.8.3.
The homology groups of spheres are:

Z®7Z, n=m=0,

H, (™) = 7, n=0m>0,
" )z, n=m>0,
0, otherwise.

We specify a generator of H,(S").

Definition 1.8.4
Let po := [Py] — [P_] € Hy(X TN X7) = Hy(S") and let iy € Hi(S") = 71(S) be given by the
degree one map (i.e. the class of the identity on S', i.e. the class of the loop t — €*™).

Define the higher i, via the map D from [1.8.2.1 as Dy, = pn—1. Then p, is called the

fundamental class in H, (S").

In order to obtain a relative version of the Mayer-Vietoris sequence, we need a tool from
homological algebra.
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Lemma 1.8.5 (Five-Lemma).
Let

Ay = Ay 2= Ay 2= Ay — A

R

B -2.p,-=.p, % p % p

B2 B3 Ba

be a commutative diagram of exact sequences. If the four maps f1, fa, f1, f5 are isomorphisms,

then so is fs.

Proof.
Again, we are chasing diagrams.

e We show that f3 is injective.

Assume that there is an a € A3 with fza = 0. Then f5f3a = fiaza = 0, as well. But f;
is injective, thus aza = 0. Exactness of the top row gives, that there is an @’ € Ay with
asa’ = a. This implies

faaoad' = faa = 0= p;frd.
Exactness of the bottom row gives us a b € By with 516 = fya’, but fi is an isomorphism
so we can lift b to a; € Ay with fia; = b.
Thus foaja; = f1b = foa’ and as fy is injective, this implies that a;a; = a’. So finally we
get that a = apad’ = asaiag, but the latter is zero, thus a = 0.

For the surjectivity of f3, assume b € Bj is given. Move b over to B, via (3 and set
a = f;'Bsb. (Note here, that if f3b = 0 we actually get a shortcut: Then there is a
b2 c B2 with ﬁgbg = b and thus an ay € AQ with f2a2 = bg. Then fgoégag = 621)2 = b)

Consider fsaga. This is equal to 84830 and hence trivial. Therefore aya = 0 and thus
there is an a’ € A3 with aza’ = a. Then b — f3a’ is in the kernel of 35, because

B3(b— fza') = B3b — faazad’ = f3b — fia = 0.

Hence we get a by € By with Boby = b — fsa’. Define ay as f; '(by), so a’ 4 asas is in As
and
f3(a' 4+ agas) = fsa' + Pafaas = fza’ + Poby = fza' +b— fza' =0b.

g

We now consider a relative situation, so let X be a topological space with A, B C X open
in AU B and set 4 := {A, B}. This is an open covering of AU B C X. The following diagram
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of exact sequences combines absolute chains with relative ones:

0
0 0 0 S,(AU B)
0——S,(AN B) S, (A) @ S,(B) SY(AU B) /07 S, (X)
0 Sn(X) 2~ 5,(X) @ S, (X) —21 Sn(X) /(i)/sn()(, AU B)
v
0— S,(X, AN B) —= S$,(X, A) & 5, (X, B>—>sn<X)/sg(Au@/ 0
0 0 0

Here, 1 is induced by the inclusion ¢: S*(AU B) — S,(AU B), A denotes the diagonal
map and diff is the difference map. It is clear that the first two rows are exact. That the third
row is exact follows by a version of the nine-lemma or a direct diagram chase.

Consider the two right-most non-trivial columns in this diagram. Each gives a long exact
sequence in homology and we focus on five terms:

H,(S¥(AU B)) — Hy(X) — Hu(Su(X)/SH(AU B)) *— H, 1(SH(AU B)) —= H,, _1(X)
Hn(v)l H Hn(w)t Hn—l(s@)t
H,(AU B) H,(X) H,(X,AUB) i H,_1(AUB)

Hn—l(X)

Then by the five-lemma[1.8.5 as H,(¢) and H,,_1(p) are isomorphisms by Corollary |1.7.13] so
is H,(1). This observation, together with the bottom non-trivial exact row of the first diagram,

proves the following

Theorem 1.8.6 (Relative Mayer-Vietoris sequence).
If A, B C X are open in AU B, then the following sequence is exact:

. —2sH,(X,ANB)—=H,(X,A) & H,(X, B)—=H,(X, AU B)>—

1.9 Reduced homology and suspension

For any path-connected space, the zeroth homology is isomorphic to the integers, so this copy of
Z is superfluous information and we want to get rid of it. Let pt denote the one-point topological
space. Then for any space X there is a unique continuous map £: X — pt.

Definition 1.9.1
We define H,,(X) := ker(H,(¢): H,(X) — H,(pt)) and call it the reduced nth homology group
of the space X.

Remarks 1.9.2.
1. Note that H,(X) 2 H,(X) for all positive n.

36



2. If X is path-connected, then Hy(X) = 0, cf. Proposition [1.3.1]

3. Choose a base point x € X. Then the composition
{z} = X — {z}

is the identity. Because of H,(pt) = H,({z}), we get from proposition about weak
retracts

H,(X)® H,{z}) 2 H,(X) .

The retraction r: X — {z} splits the long exact sequence of relative homology for {z} —
X
o Hy({2}) = Hy(X) = Hy (X, {x}) — ...

and thus we identify reduced homology as relative homology, H,(X) = H,(X,{z}).

4. We can prolong the singular chain complex S,(X) and consider the chain complex of free
abelian groups S, (X):
o= S(X) = Se(X) = Z — 0.

where e(a) = 1 for every singular 0O-simplex «. This is precisely the augmentation we
considered in Proposition [1.3.1} Then for all n > 0,

H,(X) = H,(5.(X)).

For every continuous map f: X — Y induces a chain map S.(f): S.(X) — S.(Y); for the
evaluation, we have ¥ o Sy(f) = X. We thus obtain the following result:

Lemma 1.9.3. N
The assignment X +— H,(5.(X)) is a functor, i.e. for a continuous map f: X — Y we get

an induced map H,(S.(f)): H.(S:«(X)) = H.(S.(Y)) such that the identity on X induces the
identity and composition of maps is respected.

As a consequence, H,(—) is a functor.

Definition 1.9.4
For @ # A C X we define B
H,(X,A):=H,(X,A).

Since we identified in Remark [1.9.2\3 reduced homology groups with relative homology
groups H,(X,{z}), we obtain a reduced version of the Mayer-Vietoris sequence. A similar
remark applies to the long exact sequence for a pair of spaces.

Proposition 1.9.5.
For each pair (X, A) of spaces, there is a long exact sequence

— Hy(A)—= H,(X) — Hy (X, A) —= H, 1 (A) — ...

and a reduced Mayer-Vietoris sequence, if X; N X, # 0, which is identical in positive degrees
and ends as

C.. f{()(Xl N X2) — FIO(Xl) P ﬁo(XQ) — H()(X) — 0
Examples 1.9.6.
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1. Recall that we can express the real projective plane RP? as the quotient space of S?
modulo antipodal points or as a quotient of D?:

RP?~§*/4+id 2 D?/z ~ —z for 2 € S'.

We use the latter definition and set X = RP?* A = X\ {[0,0]} (which is an open Mébius
strip and hence homotopically equivalent to S') and B = D?. Then

AN B =D\ {[0,0]} ~ S

Thus we know that Hy(A) = Z, Hi(B) = 0 and Hy(A) = Hy(B) = 0. We choose
generators for Hy(A) and H,(A N B) as follows:

a

Let a be the path that runs along the outer circle in mathematical positive direction half
around starting from the point (1,0). This is the generator for H;(A). Let  be the loop
that runs along the inner circle in mathematical positive direction. This is the generator
for Hi(A N B); note that AN B ~ D\ {0}. Then the inclusion isnp: AN B — A induces

Hi(ianp)[v] = 2[a].

This suffices to compute H,(RP?) up to degree two because the long exact sequence is
Hy(A)®Hy(B) = 0 — Hy(X) — Hy(ANB) 2 Z -3 Hy(A) 2 Z — H,(X) — Hy(ANB) = 0.

On the two copies of the integers, the map is given by multiplication by two and thus we
obtain:

Hy(RP?) = ker(2-: Z — Z) = 0,
H (RP?) = coker(2-: Z — 7) = 7.2,
Hy(RP?) = 7.

The higher homology groups are trivial, because there H,(RP?) is located in a long exact
sequence between trivial groups.

2. We can now calculate the homology groups of bouquets of spaces in terms of the homology
groups of the single spaces, at least in good cases. Let (X;);e; be a family of topological
spaces with chosen basepoints z; € X;. Consider the bouquet

X:V&.

iel
If the inclusion of x; into X; is pathological, we cannot apply the Mayer-Vietoris sequence

However, we get the following:
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Proposition 1.9.7.
If there are neighbourhoods U; of z; € X; together with a deformation of U; to {x;}, then we

have for any finite £ C [
m,(\/ X;) = @ H.(X)).
icE i€k
In the situation above, we say that the space X; is well-pointed with respect to the point
x; € )(Z

Proof.
First we consider the case of two bouquet summands. We have X; V Uy U U; V X5 as an open
covering of X; V Xs. Since (X; V Uy) N (Uy V X3) = Uy NUy is contractible, the Mayer-Vietoris
sequence then gives that H,(X) = H,(X; V Us) & H,(U; V X3) for n > 0. For Hy we get the
exact sequence _ _

0 — Ho(X1V Us) @ Hy(Uy V X3) — Hy(X) — 0.

By induction we obtain the case of finitely many bouquet summands. O
We also get
,(\/ X;) = P H.(X))
i€l iel

but for this one needs a colimit argument. We postpone that for a while.

We can extend such results to the full relative case. Let A C X be a closed subspace
and assume that A is a strong deformation retract of an open neighbourhood A C U. Let
m: X — X/A be the canonical projection and b = {A} € X/A the image of A. Then X/A is
well-pointed with respect to the point b € X/A by the neighborhood = (U).

Proposition 1.9.8.
In the situation above

H,(X,A) =~ H,(X/A), 0<n.

Proof.
The canonical projection 7w : X — X/A induces a homeomorphism of pairs (X \ A,U \ A)
(X/AN\A{b},m(U) \ {b}). Consider the following diagram:

~

o

H,(X, A) H,(X,U) = H,(X\ AU\ A)
lHn(Tr) NlHn(W)
Ho(X/Ab) —= Ho(X/A, w(U)) =—H,(X/A\ {0}, m(U) \ {b})
The upper and lower left arrows are isomorphisms because A is a deformation retract of U,
the isomorphism in the upper right is a consequence of excision, because A = A C U, cf.

Theorem [1.7.14] The lower right one follows from excision as well. The right vertical arrow is
an isomorphism, because we have a homeomorphism of pairs. U

Definition 1.9.9

1. The cone of a topological space X is the topological space

CX : =X x[0,1]/X x {0} .
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2. The suspension of a topological space X is the topological space

XX =X x[0,1]/(x1,0) ~ (22,0) and (z1,1) ~ (xq,1) for all x1,29 € X .

Remarks 1.9.10.

1. The cone over a point p is an interval. The cone over an interval is a triangle, a 2-simplex.
The cone over an n-simplex is an (n-+1)-simplex. The cone over S™ is a closed (n+1)-ball.

2. Note that for any topological space X, the cone C'X is contractible to its apex. Thus
H,(CX) = 0foralln > 0. Similarly, for A C X, we have CA C CX and H,(CX,CA) =0
for all n > 0.

3. The suspension of S" is XS™ = S*+1,

4. We have natural embeddings X — CX with z — [2,1] and CX — XX with 2 — [z, 3].
We can see the suspension as two cones, glued together at their bases.

Theorem 1.9.11 (Suspension isomorphism).
Let A C X be a closed subspace and assume that A is a deformation retract of an open
neighbourhood A C U. Then

H,(SX,SA) = H, (X, A), foralln>0.

Proof.

1. We first note two equivalences:

XUCA/CA ~ X/A, where the cone C'A is attached to X by identifying A C X and the
base A C CA:

CA

and CX/(CAUX) ~ Y X/3A:

UX

YA

40



2. Consider the triple (CX, X UCA, C'A). We obtain from Proposition [1.6.11| the long exact
sequence on homology groups

o —H, (CX,CA)—=H,(CX,CAUX)—>H, (X UCA,CA)—. ..

Since cones are contractible, the connecting morphism ¢ gives us isomorphisms

H,(CX,CAUX) =~ H, (X UCA,CA)

3. Using Proposition [1.9.8] and the equivalences from part 1. of the proof, we compute the
right hand side:

1.
H, (XUCA,CA) = H, (XUCA/CA) = H, 1(X/A) = H, (X, A) .

Similarly, we get for the left hand side

I8

~ oy . 1. .
H,(CX,CAUX) ¥ H,(CX/CAUX) = H,(SX/SA) = H,(LX,TA).

Note that the corresponding statement is wrong for homotopy groups. We have ¥S? = §3,
but 73(S?) = Z, whereas 74(S?) = Z/2Z, so homotopy groups (unlike homology groups) do
not satisfy such an easy form of a suspension isomorphism. There is a Freudenthal suspension
theorem for homotopy groups, but that is more complicated. For the above case it yields:

7T1+3(SS) = 7T1+4(S4) = .= 7'("19

where 77 denotes the first stable homotopy group of the sphere.

1.10 Mapping degree
Recall that we defined in Definition fundamental classes pi,, € H,(S") = Z for all n > 0.

Definition 1.10.1
A continuous map f: S"™ — S"™ induces a homomorphism

and therefore we get

Hn(f)ﬂn - deg(f):“n
with deg(f) € Z. We call this integer the degree of f.

In the case n = 1 we can relate this notion of a mapping degree to the one defined via the
fundamental group of the 1-sphere: if we represent the generator of 7 (S!, 1) as the class given
by the loop

w:[0,1] = S, t ™

then the abelianized Hurewicz map, h.p,: m1(S', 1) — H;(S!), sends by definition the class
of w precisely to u; € Hi(S') and therefore the naturality of h.y,

(S 1) YL 5 (st 1)

h ab hab

H(sY) Y0 gsh
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shows that
def

def na
deg(f)pn = Hy(f)pn = hap(mi(f)[w]) = han(kw]) = k.
where k is the degree of f defined via the fundamental group. Thus both notions coincide for
n=1.

As we know that the connecting homomorphism in the long exact sequence in relative
homology induces an isomorphism between H, (D", S"!) and H, ;(S"'), we can consider
degrees of maps f: (D" S"!) — (D", S" 1) by defining a fundamental class fi, := 6 ‘u, €
H, (D" S™). Then H,(f)(fin) := deg(f)ii, gives a well-defined integer deg(f) € Z.

The degree of self-maps of S™ satisfies the following properties:

Proposition 1.10.2.
1. If f is homotopic to g, then deg(f) = deg(g).

2. The degree of the identity on S™ is one.
3. The degree is multiplicative, i.e., deg(g o f) = deg(g)deg(f).

4. If f is not surjective, then deg(f) = 0.

Proof.
The first three properties follow directly from the definition of the degree. If f is not surjective,
then it is homotopic to a constant map and this has degree zero. O

It is true that the group of (pointed) homotopy classes of self-maps of S™ is isomorphic to
7, and thus the first statement in Proposition [1.10.2f can be upgraded to an ’if and only if’, but
we will not prove that here.

Recall that ¥S™ = S"*1 If f: S* — S™ is continuous, then the suspension ¥(f): ©S" — XS
is given as XS™ 3 [z, t] — [f(x),1].

Lemma 1.10.3.
Suspensions leave the degree invariant, i.e. for f: S® — S” we have

deg(3(f)) = deg(f)-

In particular, for every integer k € Z there is a continuous map f: S — S™ with deg(f) = k.

Proof.

The suspension isomorphism of Theorem [1.9.11] is induced by a connecting homomorphism
which is functorial by Proposition [1.5.5] Using the isomorphism H,;(S*™) = H,.,(XS"),
the connecting homomorphism sends i1 € Hpy1(S™) to £p, € ﬁn(S”) But then the
commutativity of

n+1(Zf

Hy1 (S™1) = Hy g (587 225K, (5S7) <= Hpy (S

| |

(s s

ensures that +deg(f)u, = £deg(Xf)u, with the same sign. O
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For the degree of a based self-map of S* one has an additivity relation deg(w”*w’) = degw” +
degw’ with respect to concatenation of paths. We can generalize this to higher dimensions.
Consider the pinch map T: S™ — S"/S"~1 ~ S§" vV S" and the fold map F: SV S" — S". Here,
F is induced by the identity of S™.

Proposition 1.10.4.
For f,g: S® — S™ based, we have

deg(F'o(fVg)oT)=deg(f) + deg(g).

Proof.

The map H,(T) sends ji, to (fin, ptn) € H,S" & H,S" = H,(S" v S™). Under this isomor-
phism, the map H,(f V g) corresponds to (tin, ptn) — (H, ( ),un, H,(g)u,) and this yields
(deg(f)fin, deg(g)pn) which under the fold map is sent to the O

We use the mapping degree to show some geometric properties of self-maps of spheres.

Proposition 1.10.5.
Let f™:S" — S" be the map

(T, @1, .-y ) = (—x0, T1, .., Tp).

Then £ has degree —1.

Proof.
We prove the claim by induction. p was by definition the difference class [+1] —[—1], and

FO = [=1) = [-1] = [+1] = —po.

We defined p,, in such a way that Du,, = u,_1. Therefore, as D is obtained from a connecting
homomorphism and thus by proposition [1.5.5| natural,

Hn(f(n)),un = Hn(f(n)>D71,unfl = Dilanl(f(nil))ﬂnfl = Dil(_,un71> = —HUn-

Corollary 1.10.6.

The antipodal map
A S —» S
e S

has degree (—1)"*1.

43



Proof.

Let f-("): S™ — S" be the map (zo, ..., x,) — (To, ..., Ti—1, —Ti, Tit1,- .., Ty). As in Proposition
1.10.5}, one shows that the degree of fl-(”) is —1.As A= f"o...0f" the claim follows from
Proposition [1.10.2].3. O

In particular, for even n, the antipodal map cannot be homotopic to the identity.

Proposition 1.10.7.
Let f,g: S™ — S" with f(z) # g(x) for all z € §", then f is homotopic to A o g, with A the
antipodal map. In particular,

deg(f) = deg(A o g) = deg(A) - deg(g) = (=1)""'deg(g).

Proof.
By assumption, for all x € S" the segment ¢ — (1 —t) f(x) — tg(z) does not pass through the
origin for 0 < ¢t < 1. Thus the homotopy

o (= 0)f(@) —ty()
H(z,1) 10— 0)f(z) —tg(z)]]

with values in S connects f to —g = Ao g. U

Corollary 1.10.8.
For any f: S™ — S™ with deg(f) = 0 there exists a point z, € S" with f(z,) = =, and a point
x_ with f(z_) = —z_.

Proof.

If f(z) # x = id(z) for all x, then by Proposition [1.10.7] f is homotopic to A oid = A. Thus
deg(f) = deg(A) # 0. If f(x) # —x for all z, then f is homotopic to A o (—id) and thus
deg(f) = (—1)"*1deg(4) £ 0. O

Corollary 1.10.9.
If n is even, then for any continuous map f : S" — S, there is an # € S" with f(z) = z or

flz) = —z.

Proof.

Because n is even, deg(A) = —1 If f(z) # z for all x € S™, by the argument given in the
proof of Corollary [1.10.8] we have deg(f) = deg(A) = —1. If f(z) # —x for all x € S", then
deg(f) = deg(A) deg(—idjs») = 1. Both at the same time is impossible. O

Finally, we can say the following about hairstyles of hedgehogs of arbitrary even dimension:

Proposition 1.10.10 (Hairy Ball theorem).
Any tangential vector field on an even-dimensional sphere S?* vanishes in at least one point.

Proof.
Recall that we can describe the tangent space at a point z € S?* C R?**! as

To(S) = {y € R**|(z,y) = 0}.
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Assume that V' is a tangential vector field which does nowhere vanish, i.e. V(z) # 0 for all
r € S?**! and V(z) € T,(S*) for all z. Consider the continuous map

fooS* o s

V(x)
T W@

Assume f(z) = x, which amounts to V(z) = ||V (z)||x. But this means that V(x) points into
the direction of 2 and thus it cannot be tangential. Thus f(z) # x for all x € S*. Similarly,

f(z) = —x yields the same contradiction. Thus the existence of such a V' is in contradiction to
Corollary [1.10.9| O

1.11 CW complexes

Definition 1.11.1
A topological space X is called an n-cell, if X is homeomorphic to R"™. The number n is called
the dimension of the cell.

Examples 1.11.2.
1. Every point is a zero cell. The spaces D" = R" =2 §" \ N are n-cells.

2. Note that an n-cell cannot be an m-cell for n # m, because R™ 2 R™ for n # m. This
follows, since R” = R™ would imply

S~ R\ {0} 2 R™\ {0} ~S™ !,

but H,_1(S*') = Z for all n and H,_,(S™ ") = 0 for n # m. Hence the dimension of a
cell is well-defined.

Definition 1.11.3
A cell decomposition of a space X is a decomposition of X into subspaces, each of which is a
cell of some dimension, i.e.,

X=||X, X;i=R"
il

Here, this decomposition is meant as a set, not as a topological space.

Examples 1.11.4.

1. The boundary of a 3-dimensional cube has a cell decomposition into 8 points, 12 open
edges, and 6 open faces.

2. The standard 3-simplex can be decomposed into 4 zero-cells, six 1-cells, four 2-cells, and
a 3-cell.

3. The n-dimensional sphere (for n > 0) has a cell decomposition into the north pole and
its complement, thus into a single zero-cell and n-cell.

Definition 1.11.5
A topological Hausdorff space X together with a cell decomposition is called a CW complex,
if it satisfies the following conditions:
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(a) [Characteristic maps] For every n-cell o C X, there is a continuous map ®,: D" — X
such that the restriction of ®, to the interior D" is a homeomorphism

~

D, D" o
and such that ®, maps S*~! = 9D" to the union of cells of dimension at most n — 1.

(b) [Closure finiteness] For every n-cell o, the closure ¢ C X has a non-trivial intersection
with only finitely many cells of X.

(c) [Weak topology] A subset A C X is closed, if and only if AN& C @ is closed for all cells
oinX.

Remarks 1.11.6.

1. The map @, as in (a) is called a characteristic map of the cell o. Its restriction ®,|gn—1
to the boundary dD" = S"! is called an attaching map.

2. Property (b) is the closure finite condition: the closure of every cell is contained in finitely
many cells. This is the 'C” in CW.

3. Since & is closed in X, condition (c) is equivalent to requiring that AN a is closed in X.
Condition (c) can be replaced by the equivalent axiom that a subset A C X is open, if
and only if AN & is open in & for all cells o in X.

4. If X is a CW complex with only finitely many cells, then we call X finite. Conditions (b)
and (c) are then automatically fulfilled.

5. Every non-empty CW complex must contain at least one zero cell. Indeed, if n > 0 would
be the lowest dimension of a cell, its boundary S"~! could not be taken into cells of
dimension at most n — 1.

6. It follows from axiom (a) that for every n-cell o, we have 7 = ®,(D").

Proof: From the general inclusion f(B) C f(B) for continuous maps, we conclude

°

&= d,(D") D> P, (D") Do .

As a compact subspace of a Hausdorff space, ®,(ID") is closed; since it lies between o and
@, we conclude ®,(D") = 7. In particular the closure @ is compact in X as the continuous
image of the compact set D".

7. It follows that & \ o for an n-cell o is contained in the union of cells of dimension at most
n— 1.

8. Every finite CW complex is compact, since it is the union of finitely many compact
subspaces ®,(D").

Examples 1.11.7.

1. The CW structures on a fixed topological space are not unique. For example, S? with the
CW structure from the cell-decomposition S? \ {N} L {N} has a single 0-cell consisting
of the north pole and one 2-cell. Projections of a tetrahedron, cube, octahedron or even
less regular bodies to the sphere provide other CW structures.
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2. Consider the following spaces with cell decomposition:

P
Va\Vs J

X

Figure 1 has two 0-cells and two 1-cells. The cell boundary of one of the 1-cells is not
contained in 0-cells, cf. Remark [.11.6]7. Hence axiom (a) is violated. It is satisfied in
figure 2, where we have four 1-cells and four O-cells. Figure 3 with three 1-cells and three
0-cells is not a CW complex, since the cell closure of one of the 1-cells is not compact.
Figure 4 is again a CW complex.

3. Consider the topological space X = X; U X, C R? with

1
X, ={(r,;sin-)[0<z <1} CR® Xp:={(0,y)|-1<y<1}
x
with the topology induced from R2. We consider a cell decomposition with (0,41) as
O-cells and X and X; as 1-cells. Here the axiom (a) is violated, since the boundary of
X is not in the 0-skeleton. (This space is indeed not CW decomposable.)

4. Consider the disc with the following two different cell decompositions:

e The center 0 € D? and any point on the boundary are declared to be a 0-cell. Every
radius is a 1-cell. Axioms (a) and (b) are satisfied, but axiom (c) is not: take an open
interval on the boundary. Then all intersections with all closures of cells are closed,
but it is not a closed subspace of D?.

e Any point in the boundary is a 0-cell, the only 2-cell is D?2. Axiom (b) is not satisfied,
since the closure of the two-cell has a non-trivial intersection with infinitely many
0-cells. But axioms (a) and (c) hold.

5. The unit interval [0, 1] has a CW structure with two zero cells and one 1-cell. But for
instance the decomposition of = {0}, o = {1}, % > 0 and 0} = (515, ) does not give a
CW structure on [0, 1]. Consider the following countable subset A C [0, 1]

1/1 1
A=+ —— .
U (i) e

Then A N &} is precisely the point %(% + %H) This is closed, but the subset A is not

closed in [0, 1], since it does not contain the limit point 0 of A.

Remark 1.11.8.

e Historically, the notion of a simplicial complex plays an important role: a set K of simplices
in R" is called a simplicial complex or polyhedron, if the following conditions are satisfied:

(a) If K contains a simplex, it contains all faces of this simplex.
(b) The intersection of two simplices of K is either empty or a common face.

(c) K is locally finite, i.e. every point of R™ has a neighborhood that intersects only
finitely many simplices of K.
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A simplicial map is a map that takes any k-simplex affinely into a k’-simplex with &’ < k.

e The subspace | K| := Ugers C R™ is called the topological space underlying the complex
K. Simplicial homology can be defined for a simplicial complex; it depends only on | K|.

Simplicial homology has various disadvantages: E] for example, S? can be written as a
simplicial complex with 14 simplices only (obtained from the projection of the tetrahedron
to the sphere), but as a CW complex with a 0-cell and a 2-cell only. A 2-torus S* x St
can be written as a CW complex with 4 cells, but the smallest simplicial complex has 42
cells.

Definition 1.11.9

1. The union X" =, dim(o)<n @ Of cells of dimension at most n is called the n-skeleton
of X.

2. If we have X = X" but X"~! C X, then we say that X is n-dimensional, i.e., dim(X) = n.

3. A subset Y C X of a CW complex X is called a subcomplex (sub-CW complex), if it has
a cell decomposition by cells of X and if for any cell o C Y, also its closure G in X is
contained in Y, i.e.d C Y.

4. For any subcomplex Y C X, (X,Y) is called a CW pair.

We characterize subcomplexes:

Lemma 1.11.10.
Let X be a CW complex and Y C X be a subspace, together with a cell decomposition by a
subset of cells of X. Then the following conditions are equivalent:

1. Y is a subcomplex, i.e. for any cell o C Y, the closure @ in X is contained in Y.
2. Y is closed in X.

3. The cell decomposition (with the cells of X) endows Y with the structure of a CW
complex.

Proof.
2= 1 is trivial: @ C Y = Y. (Here the bar denotes closure in X, of course.)

1= 2 The topology of X is such by axiom “W” that Y is closed, if and only if Y N7 is closed
in X for all cells ¢ in X. Since X is closure finite, & hits only finitely many cells of X.
Since Y is the union of cells of X, only finitely many of these cells appear in

cNY =cN(01U...Ug,)
with o; cells of Y. By 1., 3; C Y, thus
cNY =N, U...UG,)

The intersection of finite unions of closed subsets of X is closed in X, thus this is closed
in X.

2“Computing homology with simplicial chains is like computing integrals f; f(z)dz with approximating
Riemann sums.” (Dold, Lectures in algebraic topology, 1972)
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3= 1

1,2=3

For any cell o C Y, a characteristic map @/ for Y exists by 3. It is also characteristic for
X. Remark [1.11.6/6 that & = ®/ (D) now implies that the closure of o in Y agrees with
the closure of o in X.

1 implies that a characteristic map for a cell ¢ C X relative to the complex X is also char-
acteristic relative to Y. This implies the existence of characteristic maps for Y. Closure
finiteness for Y is immediate from the one for X. Thus axioms (a) and (b) hold.

We still have to show that for A C Y the condition that ANaY is closed in Y for all cells
o C Y implies that A is closed in Y. (Here & is the closure of o in Y.) By 2), a set is
closed in Y, if and only if it is closed in X.

It follows that the closure of each cell 0 C Y in Y agrees with the closure of o in X. It
also follows that it is enough to show that A M@~ is closed in X for all cells 0 C X.
Closure finiteness implies

cNA=aN(1U...Uc,)NA
where we can assume that o; are all cells in Y. Now
EﬂAZEH(ElU...UET)ﬂA

and by assumption A N, is closed in X for all i. Thus ANa is closed in X.

Corollary 1.11.11.

1.
2.
3.
4.

Arbitrary intersections and arbitrary unions of subcomplexes are again subcomplexes.
The skeleton X™ is a subcomplex.
Every union of n-cells in X with X"~! forms a subcomplex.

Every cell lies in a finite subcomplex.

Proof.

1.

2. and 3.

The subcomplexes are closed in X by Lemma [1.11.10 hence their intersection is closed
and by Lemma [1.11.10] a subcomplex. The statement about the union follows directly
from the definition of a subcomplex.

follow from the observation that for an n-cell o we have that @ = (¢ \ ¢) U o is contained
in X" 1Uo.

. Induction on the dimension of the cell; then use closure finiteness and 7 = ¢, (D).

We want to understand the topology of CW complexes.

Remarks 1.11.12.

1.

Cells do not have to be open in X. For example, in the CW structure on [0, 1] with two
zero cells 0 and 1, the O-cells are not open in [0, 1].
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2. If X is a CW complex and o is an n-cell, then o is open in the n-skeleton X". Indeed,
for € o, choose a neighborhood U that is open in o. The intersection U N ¢’ for any
other cell ¢’ is empty, unless ¢’ = 0. (Since there are no cells of higher dimension, only
the boundary of o intersects other cells.) By the weak topology, then U is also open in

X.
The n-skeleton X" is by corollary [1.11.11}2 a subcomplex and thus by lemma [1.11.10{2
closed in X.

3. We can replace condition (c), that A is closed (resp. open) in X, if and only if the
intersection of A with & is closed (resp. open) in @ for any cell o, by the equivalent
condition that A is closed (resp. open) in X if and only if AN X™ is closed (resp. open)
in X" for all n > 0.

4. A CW-complex X is the direct limit of its skeleta, lim__, X™. Recall that a direct limit
of a of a directed system of topological spaces (X"),en that is an ascending system of
subspaces X° C X' C ... is the union X = (J,., X" = UX"/ ~ with the quotient
topology. Thus a CW complex has the final (“weak”) topology. This is the "W’

Such a direct limit has the following universal property: for any system of maps (f,: X" —
Z)n>o0 such that f,.1|x» = f, there is a uniquely determined continuous map f: X — Z
such that f|xy» = f,. This is important for constructing maps out of CW complexes by
extending maps recursively on n-cells.

Using the universal property of the sum of topological spaces, the characteristic maps of
all cells combine into a single map

O U,D" — X

which endows X with the quotient topology.

Definition 1.11.13
Let X and Y be CW complexes. A continuous map f: X — Y is called cellular, if f(X™) C Y™
for alln > 0.

The category of CW complexes together with cellular maps is rather flexible. Most of the
classical constructions do not lead out of it: for example, CW complexes nicely behave with
respect to collapsing subspaces to points. If X is a CW complex and A C X a subcomplex,
the cell decomposition of X/A consisting the zero-cell A and the cells of X \ A is again a CW
decomposition. Thus X/A is a CW complex in a canonical way.

However, one has to be careful with respect to products:

Proposition 1.11.14.
If X and Y are CW complexes, then X x Y is a CW complex, if one of the factors is locally
compact.

Proof.
As products of cells are cells, X xY inherits a cell decomposition from its factors. Characteristic
maps are products of the characteristic maps for the factors. Closure finitenss follows from
o X T =0 X T. We need to ensure that X x Y carries the weak topology.

To this end, we need a few auxiliary facts:
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e For two spaces U,V let C'(U,V) be the set of all continuous maps from U to V. The
topology of C'(U, V) is generated (under finite intersections and arbitrary unions) by the
sets V(K,0) = {f € C(U,V)|f(K) C O} for compact K C U and open O C V. This
is called the compact-open topology. (If U is compact and (V,d) is a metric space, the
compact-open topology is the one of the metric of uniform convergence,

CKf,g)F=igchf(ULg(u»,

see [Laures-Szymik, p. 72].)
e If 7 is locally compact and all spaces are Hausdorff, there is a homeomorphism
C(X xZ,W)=C(X,C(Z,W)) (%)
of topological spaces. Here, for f : X x Z — W we consider for any given x € X the map
[ffx): 2 — W
z = f(z,z)

This yieds a continous map f# : z +— f#(x). The homeomorphism (x) sends f to f# €
C(X,C(Z,W)).

e Using these facts, we show the following Lemma:
Let X, Y and Z be topological spaces satisfying the Hausdorff condition and suppose
that 7: X — Y gives Y the quotient topology and that Z is locally compact. Then

axid: X xZ—=YxZ

gives Y x Z the quotient topology.

We have to show that Y x Z has the universal property of a quotient space. Hence suppose
that g: Y xZ — W is a map of sets and assume that the composition go(mxid) : X xZ —
Y x Z — W is continuous.

Under the adjunction (x), the map g o (7 x id) corresponds to the composite

i Xy -z w).

which is continuous as the image under the adjunction (x). Since Y carries the quotient
topology, the map g7 is continuous and hence, again by (*), the map g : Y x Z — W is
continuous, too.

e With the help of this result we consider the characteristic maps of X and Y,

®,: D" — X, for o an ny-cell in X
V. : D™ =Y, for 7 an m,-cell in Y.

We use the product of topological spaces to combine these maps to a single map and
write X X Y as a target of a map

Ox U (| |Dm)x (| D) - X x V.
To establish that X x Y has the weak topology, we can show that X x Y carries the
quotient topology with respect to this map. We know that each D" is locally compact,
thus so is the disjoint union of closed discs. The map id| jprs x ¥ gives (| |D") x Y the
quotient topology and by assumption Y is locally compact and therefore, by the result of
the previous point, ® x idy induces the quotient topology on X x Y.
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Lemma 1.11.15.
If D is a subset of a CW complex X and D intersects each cell in at most one point, then D
is discrete.

Proof.

Let S be an arbitrary subset of D. It suffices to show that S is closed. The closure & of any
cell 0 of X is covered by finitely many cells. Hence S N & is finite. Since X is by definition
Hausdorff (thus 77), S N & is closed in &. Since this holds for all cells o, the weak topology
guarantees that S is closed in X. O

Corollary 1.11.16.
Let X be a CW complex.

1. Every compact subset K C X is contained in a finite union of cells.
2. The space X is compact, if and only if it is a finite CW complex.

3. The space X is locally compact, if and only if it is locally finite, i.e. every point has a
neighborhood that is contained in finitely many cells.

Proof.

e We show that 1. implies one implication in 2. If X is compact, then by 1. it is contained
in a finite union of cells. The converse was shown in Remark [L11.618.

e [t is clear that 2. implies 3.

e Thus we only prove 1: consider the intersections K Mo with all cells o and choose a point

Do in every non-empty intersection. Then D := {p,|o a cell in X} is discrete by Lemma
1.11.15, It is also compact and therefore finite.

g

Corollary 1.11.17.
If f: K — X is a continuous map from a compact space K to a CW complex X, then the
image of K under f is contained in a finite skeleton.

For the proof just note that the image f(K) is compact in X and apply [1.11.16]1.

Proposition 1.11.18.
Let A be a subcomplex of a CW complex X. Then X x {0} U A x [0, 1] is a strong deformation
retract of X x [0, 1].

Proof.

e Consider first the case when X = D" and A = D" = S"!. For r: D" x [0,1] —
D" x {0} US"! x [0,1] we can choose the standard retraction of a cylinder onto its
bottom and sides, cf. Figure VII-6 in Bredon, p. 451.
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e We inductively construct retractions
pr: X x{0OJUAXTUX"xI)— X x{0}UAx]0,1],

where p,,1 extends p,. Suppose that p,_; is given. Then extending to an r-cell of X
amounts to extending on D" x [0, 1] along D" x {0} US™! x [0, 1]. As we have seen, this
can be done.

These maps for all r-cells fit together to a map on the r-skeleton (X x [0, 1])" which, by
the weak topology, fit together to a retract X x [0,1] — X x {0} U A x [0, 1].

g

Definition 1.11.19
1. Amapp: E — B has the homotopy lifting property, if for any space Y and any homotopy

h:Y x[0,1] - B

and any map g : Y — FE such that po g = hg there exists a map H : Y x I — E with
po H = h such that H(y,0) = g(y) for ally € Y. As a diagram:

7
H -
Lo // p
s

YxI" B

Then the continuous map p : ' — B is called a fibration.

2. A map:: A— X has the homotopy extension property, if for any space Y and any map
g: X =Y and h: Ax[0,1] =Y a homotopy such that h|ax{0y = g o ¢, then there is an
extension of h to H : X x [0,1] — Y, compatible with g and h.

As a diagram:

y-—2 X
I
Po // L
A
C(I,Y)<h—A

(Note that by adjunction (%) a map A — C(I,Y’) amounts to a homotopy A x [ —Y.)
Then ¢ : A — X is called a cofibration.

The property in Proposition [1.11.18] implies that any subcomplex of a CW complex has the
homotopy extension property. Indeed, two maps

g: X—=Y and h: Ax[0,1] =>Y
such that h|axjoy = g can be combined to a single map
g: Xx{0JUAX[0,1] =Y ;

a retraction r : X x [0,1] — X x {0} U A x [0, 1] provides the homotopy extension g o r :
XxI—=Y.

In the following we collect some facts about the topology of CW complexes that we do not
prove:
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Lemma 1.11.20.

1. For any subcomplex A C X, there is an open neighborhood U of A in X together with
a strong deformation retract to A. In particular, for each skeleton X™ there is an open
neighborhood U in X (and as well in X"™!) of X" such that X™ is a strong deformation
retract of U.

2. Every CW complex is paracompact, locally path-connected and locally contractible. (A
topological space X is paracompact, if every open cover has a locally finite open refine-
ment.)

3. Every CW complex is semi-locally 1-connected, hence possesses a universal covering space
which has a natural structure of a CW complex.

Lemma 1.11.21.
For the skeleta of a CW complex X, the following homeomorphisms hold:

1.
X"\x= || o= || D
o an n-cell o an n-cell
2.
xr/xrte \/ s
o an n-cell
Proof.

The first claim follows directly from the definition of a CW complex. For the second claim
note that the characteristic maps send the boundary dD" to the (n — 1)-skeleton and hence
for every n-cell in X we get a copy of S in the quotient X" /X"1. O

Example 1.11.22.
Consider the two-dimensional CW complex given by the hollow cube W?2. Then W?2/W! =
\/?:1 S?, a bouquet of 6 two-dimensional spheres.

1.12 Cellular homology
In the following, X will always be a CW complex.

Lemma 1.12.1.
For the relative homology of the skeleta, we have H, (X", X" 1) =0 for all ¢ #n > 1.

Proof.
Using the identification of relative homology and reduced homology of the quotient gives

Hy (X", X" 2 H (X" /X" = P H(S").

o an n-cell
The first isomorphism uses Lemma [1.11.20[1 and Proposition [1.9.8] The last isomorphism uses
Lemma [I.11.21]2 and Proposition [1.9.7] O

Lemma 1.12.2.
Consider the inclusion i, : X™ — X of the n-skeleton X" into X.
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1. The induced map H,(i,): H,(X™) — H,(X) is surjective.
2. On the (n + 1)-skeleton we get an isomorphism

Hy(iny1): Ho(X™) = H, (X).

Proof.

e Using the inclusion of skeleta, we can factor 7, : X” — X as

A
X" = X
l/oé 'Z:nJrl /
1 .
; tn+3
Tn+42
n+1 n+2 n+3
X s X as X T)' e

The map H,,(a;): H,(X™) — H,(X™") is surjective, because Lemma [1.12.1| asserts that
H, (X" X™) = 0. For i > 1 we have the following piece of the long exact sequence of
the pair (X"t Xn+i—1)

02 Hypr (X7, X1 g, (b0 g ety g (X XL 22 ),

Therefore H,(c;) is an isomorphism in this range. If the complex X is finite-dimensional,
this already proves both claims.

e To deal with the general case, observe that every singular simplex in X, as the continuous
image of the compact standard simplex, has compact image which, by Corollary
is contained in one of the skeleta X". Let a € S,(X) be a chain, a = >_;", A\;;. Then
we can find an M such that the images of all the f3;’s are contained in the skeleton X,
say for M = n + gq. Therefore [a] € H,(X) can be written as H,(iy)[b], for some class
[b] € H,(XM).

Now a4 o ... 0« induces a surjective map in homology, hence [b] can be written as
H, (o) 0...0Hy(oq)[c] for some [c] € H,(X™). This implies

la] = Hu(inr) 0 Hu(ag) o .. 0 Hy(an)[e] = Hy(in)]d]
thus H,(i,) is surjective, showing the first assertion.

e Since H,(i,) = Hy(int1) o Hy(aq) and H,(i,) is surjective by the preceding assertion, it
is clear that H,(i,.1) is surjective as well.

Suppose that H,(i,41)[a] = 0 for some n-chain a. Then there exists an n+ 1-chain 8 such
that S, (inr1a) = 0b. Using the same argument, there exists M = n + ¢ such that § can
be defined in terms of the M-skeleton. Thus S, (ay4q-1)©...0 S, (ns1)(a) = 0b and thus
H,(opig—1) 0 ...0 Hy(ant1)([a]) = 0. But all maps are isomorphisms, thus [a] = 0.

g

Corollary 1.12.3.
For CW complexes X, Y we have

1. If the n-skeleta X™ and Y are homeomorphic, then H,(X) = H,(Y), for all ¢ < n.
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2. If X has no g-cells, then H, (X) = 0.

(&)

3. In particular, if ¢ exceeds the dimension of X, then H,(X) = 0.

Proof.
1. The first claim is a direct consequence of Lemma [1.12.2| which asserts that H,(X"*1) =
H,(X).

2. By assumption in 2. X?°! = X4 therefore we have H,(X9') = H,(X?) and the latter
surjects by Lemmall.12.2/2 onto H,(X). Hence 2. is reduced to the statement in 3, applied
to X971t

3. We show that H,(X") = 0 for n > r. Consider the long exact sequence o relative homology
— Hp (X5 XY = Hy (XY — Hy (XY — Hp (X X7 —

For i < n, the the adjacent relative groups H, (X%, X*~1) are trivial by Lemma[1.12.1} In
this way, we get a chain of isomorphisms

H,(X") 2 H, (X" ') ~=... 2H,(X".

Observation 1.12.4.
1. Let X be a CW complex. Note that by the proof of Lemma [1.12.1

Co(X)=H, (X", X" )= P H.(S)= P Z

o an n-cell o an n-cell
is a free abelian group. For n < 0, we let C,(X) be trivial.

2. If X has only finitely many n-cells, then the abelian group C,,(X) is finitely generated.

If X is a finite CW complex, then C,(X) is finitely generated as a chain complex, i.e.
C,(X) is only non-trivial in finitely many degrees n, and in these degrees, C,,(X) is finitely
generated.

3. Consider the map
d: Hn(Xn,Xn_l) 4 n—l(Xn_l) e nfl(Xn_l,Xn_Q)

where ¢ is the connecting morphism in the long exact sequence in relative homology from
Theorem for the pair X"~! C X™ and p is the map induced by the projection map
Spo1 (X1 — S, (XL X2,

The map d is a boundary operator: the composition d? is pod o oo 4, but
§o0: Hy (X" B Hy (X", X772 S Hy (X"

is a composition in a long exact sequence and thus vanishes.
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Definition 1.12.5
Let X be a CW complex. The cellular chain complex C.(X) consists of the free abelian groups
Cn(X) := H, (X", X"1) with boundary operator

d: Hn(Xn“X'n—l)L_ n—l(Xn_l>L' n—l(Xn_laXn_Q)
where ¢ is the map induced by the projection map S,_1(X" 1) — S, (X", X""2),
Theorem 1.12.6 (Comparison of cellular and singular homology).

For every CW complex X, there is an isomorphism Y: H,(C.(X),d) = H,(X) relating cellular
and singular homology.

Proof.
Consider the diagram
Cn+1(X) _ Hn+1(Xn+1, Xn)
n 5 n Hp (in)
d H, (X, X™) H,(X™) H,(X)
o
Ch(X) H, (X", X" 1)
l)\ \
a Ho(X, X7 — L (X 22 (X))
o
Cnfl(X) — anl(Xn_la Xn—2)
d Hy (X, Xm0 =2, p(xm2y 2le) g (x)
/

1. The fact that Hy(X*"1) = 0 for all k by Corollary [1.12.3, combined with the long exact
sequence
0=H, (X" = H,_ (X" ) 5 H,_ (X", X"?)

implies that all occurring o-maps are injective.
2. For every a € H,(X™) the element g(a) € H,(X", X" 1) = C,(X) is a cycle for d:
do(a) = 0do(a) =0 ,
since 0 o p = 0, cf. [1.12.4]3.

3. Conversely, let ¢ € C,(X) be a d-cycle, thus 0 = dc = pdc. As p is injective by 1.,
we obtain dc = 0. Exactness of the long exact sequence yields that ¢ = p(a) for some
a € H,(X™). Hence, p induces an isomorphism

H,(X") Zker(d: Cp,(X) — Cp1(X)) .
We have thus expressed the cycles of the cellular complex in terms of the simplical ho-

mology group H,(X™).
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4. We define T: ker(d) — H,(X) as Y[¢] = H,(i,)(a) for ¢ = p(a) with a € H,(X™) and
H,(in): H,(X™) — H,(X).

5. The map 7T is surjective, because H,(i,) is surjective by Lemma [1.12.2/1.

6. In the diagram, the triangles commute, i.e. 6 = § o A\, where \ : H, (X" X") —
H(X,X"™) comes from the triple (X, X" X™).

7. Consider the long exact sequence for the pair (X, X"™1):

Hn+1(Xn+1)_» n+1(X>—> n+1(XvXn+1)—>Hn(Xn+1)E—>Hn(X)-

The surjectivity of the first morphism is Lemma [I.12.2]1. The last morphism is an
isomorphism by Lemma [I.12.2]2. The second morphism is zero, hence the morphism
H,1 (X, X" — H,(X™"1) is injective. Its image is the kernel of an isomorphism and
thus zero. This tells us that H, (X, X"™) = 0.

Now consider the triple (X, X"+ X™) which by Proposition [1.6.11| yields the exact se-
quence
Hy (X" X™) = Hy (X, X™) = Hy (X, XM =0

which implies that A : H, (X" X") — H,,1(X, X") is surjective.

8. Using this we obtain
im(8) Z im(6) < ker(H,(in))

where ‘les’ indicates that we used the long exact sequence. As d = pod, the injective map
o induces an isomorphism between the image of d and the image of 9. Thus

imd = imé = ker H,, (i) .

9. Taking all facts into account we get that ¢ induces an isomorphism

ker(d: C,(X) = Co 1(X)) . Ha(X")
im(d: Cpya(X) = Cu(X))  ker(Hn(in))

The numerator is 3., the denominator is 8. and the injectivity of p, cf. 1. But for any n,

the sequence
0—ker H,, (i, ) —Hp (X ™) —im(H,,(i,,))—=0

is exact and therefore
H,(X™)/ker(H,(i,)) = imH,(i,) = H,(X) ,

where the last isomorphism comes from the surjectivity in Lemma [1.12.2]1.

The differential of the cellular complex is very explicitly computable as well:

Proposition 1.12.7 (Cellular Boundary Formula).
Let X be a CW complex. Identify by Observation [1.12.4]1 cells ¢! with the generators of the
cellular chain group C,(X). Denote by d,s € Z the degree of the map

Apg: St X1 Sg’l

67

o8



that is the composition of the attaching map of the n-cell oy with the quotient map collapsing
the complement X1 \crg_1 of a given (n — 1)-cell 02—1 to a point. Then the differential of the

cellular chain complex is
d(oy) = Z daﬁagfl :
B

(This is a finite sum, since the attaching map of ¢/ has compact image and thus only meets
finitely many cells ag’l.)

Proof.
Consider the commuting diagram:

o A&B*

Hn(DZaaDZ) f{n—l(aﬂ)g) gn—l(Sg_l)

‘ba*t ¢a*j Tqﬁ*

Hn(Xn,Xn_l) g Hn—l(Xn_l) 9 anl(Xn_l/Xn_Q)

T

Hn—l (anl’ anQ)

14

where

e &, : D" — X" is the characteristic map for the cell ¢ and ¢, : ID” — X"~! the
attaching map.

o ¢: X" — X" /X" 2 is the quotient map.

o qz: X" 1/X"? — S} collapses the complement X"\ o~ of the cell o5~ to a point.
The resulting quotient sphere is identified with ]DDZ’1 / (9]D)g’1 via the characteristic map
'

e Finally, A,p := gg 0 ¢ 0 ¢, is defined as the composition of the attaching map ¢, of the
cell o7, following by collapsing the complement of ag’l in X" 1,

The characteristic map ®,. takes a fundamental class @, € H,(DZ,oD), cf. comments
before Proposition , to a generator e” of the summand in H, (X", X"!) corresponding to
the cell o7. The commutativity of the left part of the diagram implies that d(e?) = ppa«df, =
P © Pa(fn-1)-

In terms of the canonical basis of H, (X" ', X" 2), the map gs. is the projection on the
Z-summand corresponding to O’Z_l. The commutativity of the diagram now shows the claim.

t

Examples 1.12.8 (Projective Spaces).
Let K be R,C or H; set m := dimg K. The multiplicative group K* := K \ {0} acts on the
vector space K™™' via scalar multiplication,

K* x K"\ {0} = K"\ {0}, (A, v) = Ao

We define KP" = (K"™\ {0})/K* and we denote the equivalence class of (z,...,z,) in KP"
by [z : ... : x,]. The n + 1-tuple (xo,...,x,) is called the homogeneous coordinates of the
point [xg:...:x,] € KP"
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We define subsets for 0 <7< n
X ={lro:...:x]jrs #0, 2441 = ... =2, =0} C KP"

and consider the map

& Xy — K &[xoz...:xn]:(@ ...,xi_l).

b
Z; X

The map &; is a homeomorphism; thus X; is a cell of K P™ of real dimension idimg(K) = im.
We can write KP" as Xy ... U X, and we have characteristic maps ®;: D™ — KP" as

D,(y) = Pi(vo, .- ¥ic1) =[Yo: - iy L—|ly|]|: 0:...: 0]

with X; = ®;(D™). This defines a structure of a CW complex on K P".

1. First, consider the case K = C. Here, we have a cell in each even dimension 0,2,4,...,2n
for CP™. Therefore the cellular chain complex is

Z k=2i,0<i<n,
Ck((CP"):{ 7, 1<n

0 k=2r—1ork>2n.
The boundary operator is zero in each degree and thus

Z, x=2i,0< %< 2n,
0, otherwise.

HACPW::{

2. The case of the quaternions, K = H, is similar. Here the cells are in degrees congruent to
zero modulo four, thus

H,(HP") =

Z, x=41,0< x < 4n,
0, otherwise.

3. Non-trivial boundary operators occur in the case of real projective space, RP™. Here, we
have a cell in each dimension up to n and thus the homology of RP" is the homology of
the chain complex

00, ~272%c _=27% 4o,~7.

We first consider the case of RP?, which we write as a CW-complex with one 0-,1- and
2-cell. The 1-cell is attached to the 0-cell to form a circle. Thus d[a] = 0. The 2-cell, a
disc, is attached to the circle using a map of degree +2, where the sign is undetermined,
since we did not fix orientations.

Thus the complex becomes
0-4Z232%72 -0

and we read off the homology groups we computed in Example [1.9.6]1:

Hy(RP*) =7, H,(RP?>)=127Z/2Z and Hy(RP?) =0.
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4. In general, X = RP" has, for 0 < k < n the k-skeleton X* = RP*. The attaching map
of the single k-cell is
¢:0DF =S S RPML =814

where A is the antipodal map. We have to compute the degree of the composition

Sk-1 2. §k-1/ 1 id = RPF-!

Tl |

Rpk_l/RPk_2 ~ Sk—l

By construction ¢, o A = ¢y, with A the antipodal map, and thus

deg(¢r) = deg(dy, 0 A) = (—1)"deg(r)

and hence the degree of ¢y is trivial for odd k. The complement S¥~'\ §¥2 has two
components X, X_ and A exchanges these two components. The map ¢, sends X, and
X_ to [X,]. Therefore the degree of ¢y is

deg(¢y) = deg(F o (idV A)oT) T4 deg(id) 4 deg(A) = 1+ (—1)".
and d is either zero or two. For the cellular complex, we find

L7375 7 0.

Thus, depending on n we get

A E=0
Hy,(RP") =< 7Z/2Z k < n,k odd
0 otherwise.
for n even.
For odd dimensions n we get
) kE=0,n
Hy,(RP")=<7Z/2Z 0<k<n,kodd
0 otherwise.

Note that RP' = S! and RP3 = SO(3).

1.13 Homology with coefficients

Let G be an arbitrary abelian group.

Definition 1.13.1
The singular chain complex of a topological space X with coefficients in G, S.(X;G), has as

elements in S, (X; G) finite sums of the form Zfil g;a; with g; in G and o;: A™ — X a singular
n-simplex. Addition in S, (X;G) is given by

N

N N
D gii +Y hiai =Y (gi + hi)a.
i—1 i=1

=1
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The nth (singular) homology group of X with coefficients in G is
H,(X;G) = H,(S.(X;Q))

where the boundary operator 0: S,(X;G) — S,_1(X; G) is given by

n

03 gies) = 3 (~D(Ygilaiody)) -

Jj=0

We use a similar definition for cellular homology of a CW complex X with coefficients
in G. Recall from Observation [1.12.4] that the chain groups are C,(X) = H, (X" X" 1) =

@O’ an n-cell L.

Definition 1.13.2

We write ¢ € C,,(X;G) as ¢ = Zf\;l Gi0; € @D, .1 ncen G and let the boundary operator d be
defined by dec = SN | gid(o;) where d: Cp(X) — C,_1(X) is the boundary in the cellular chain
complex of X defined in Observation [1.12.4,

We can transfer Theorem [1.12.6[ to the case of homology with coefficients:

H,(X;G) = H,(C.(X;G),d)

for every CW complex X and therefore we denote the latter by H,(X;G) as well.
Note that H,(X;Z) = H,(X) for every space X.

Example 1.13.3.
In the case X = RP?, we see that coefficients really make a difference.

e Recall from Example that for coefficients G = Z we had that Hy(RP?) & Z,
H\(RP?) = 7,/27 and Hy(RP?) = 0.

e However, for coefficients G = Z /27 the cellular chain complex looks rather different:

0—7/22-"57.)22.—17/27—0

and therefore H;(RP* Z/27) = Z/2Z for 0 < i < 2.
e For rational coefficients, we we consider H,(RP?; Q). We obtain the cellular complex
0—Q—>Q—>Q—0

But here, multiplication by 2 is an isomorphism and we get Ho(RP%* Q) = Q,
H,(RP% Q) = Q/2Q = 0 and Hy(RP% Q) = 0.

1.14 Tensor products and the universal coefficient theorem

We need to clarify whether homology H.(X,G) with coefficients in an abelian group G is
computable from singular homology H,.(X) and the group G. To see that this can indeed be
done, we need a few more algebraic facts.

Definition 1.14.1
Let A and B be abelian groups. The tensor product A ® B of A and B is the quotient of the
free abelian group generated by the set A X B by the subgroup generated by
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(a) (ay + as,b) — (a1,b) — (as,b),
(b) (a,by + by) — (a,by) — (a,bs)

for a1,a1,a € A and by, by, b € B.
We denote the equivalence class of (a,b) in A® B by a ®b.

Remarks 1.14.2.

1.

The relations (a) and (b) imply that A(a®b) = (Aa) ® b = a ® (A\b) for any integer \ € Z
anda € A, b€ B.

. Elements of the abelian group A ® B are finite sums of equivalence classes 1" | \ja; ®b;.
. The group A ® B is generated by elements a ® b with a € A and b € B.

. The tensor product is symmetric up to isomorphism and the isomorphism AQ B = B® A

is given by

=1 =1

. The tensor product is associative up to isomorphism:

AR (B®C)= (A2 B)®C

for all abelian groups A, B, C.

. For homomorphisms f: A — A" and ¢g: B — B’ we get an induced homomorphism

f®g A®B — A ®B
which is given by (f ® ¢g)(a ® b) = f(a) ® g(b) on generators.

The tensor product has the following universal property. For abelian groups A, B, C, the
bilinear maps from A x B to any abelian group C' are in bijection to linear maps from
A® B to C,

AXx B C

7
e
e

x U7 A

A®B

. We have already encountered tensor products in Section|1.13} we have group isomorphisms

for cellular and singular homology with values in an abelian group G:

Su(X)®G S, (X;G) and  Cu(X)®G 2 CWy(X;G) .

We collect the following properties of tensor products:

Remarks 1.14.3.

1.

For every abelian group A, we have isomorphisms
ARZ=AZZRA
with a ® n — n.a and inverse a — a ® 1.
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2. For every abelian group A, we have
AQZInZ = A/nA.

Here, nA = {nala € A} is a subgroup of A for any abelian group A. The isomorphism is
given by

a®irsia
where ¢ denotes an equivalence class of i € Z in Z/nZ and ia the class of ia € A in A/nA.

310 5 A B2 C = 0is a short exact sequence of abelian groups, then for an
arbitrary abelian group D, the sequence

0—A® D22 Be D 0w D—0

is not necessarily exact. For example, the sequence
0-Z—Q—Q/Z—0
is exact, but tensoring with Z/2Z yields
0-ZQRZL]2Z — QRZ/2Z — Q/ZRZ/2Z — 0
is not, because Q ® Z/27Z = Q/2Q = 0 and tensoring yields
0—>7Z/2Z—0—0—0

which is obviously not exact.

Lemma 1.14.4.

1. For every abelian group D, (—) ® D is right exact, i.e. if 0 = A -+ B oS5 0isa
short exact sequence, then

Ao D29 B e D Yo g D—s0

18 exact.

2. If the exact sequence 0 — A — B S0 S0isa split short exact sequence, then

0—=A® D4R o D Yo w D—s0

is exact for any abelian group D.

Proof.
Exercise. O

Suppose, tensoring with the abelian group D would be exact. Then, we could tensor the
exact sequence of abelian groups

0— Bu(X)— Z,(X) > Hy(X)— 0

with the abelian group G and get the isomorphism between

Ho(X:G) € H (S (X)) 0 G) Y Z,(X) 2 G/Bu(X) ® G
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and

Hy(X)®G = Hoy(Su(X) @G .

A consequence of the failure of the functor (—) ® D to be exact on the left hand side is that
this isomorphism is, in general, wrong.

Definition 1.14.5
Let A be an abelian group. A short exact sequence 0 - R — ' — A — 0 with F a free
abelian group is called a free resolution of A.

Note that in the situation above R is also free abelian, because it can be identified with a
subgroup of the free abelian group F'.

Example 1.14.6.
For every n > 1, the sequence 0 — Z —+ Z — Z/nZ — 0 is a free resolution of the cyclic
group Z/nZ.

Proposition 1.14.7.
Every abelian group possesses a free resolution.

The resolution that we will construct in the proof is called the standard resolution of A.

Proof.
Let F be the free abelian group generated by the elements of the underlying set of A. We denote
by y, the basis element in F' corresponding to a € A. Define a homomorphism

p:F — A
ZaeA/\aya = ZaEAAaa’

Here, A\, € Z and this integer is non-zero for only finitely many a € A. By construction, p is
an epimorphism. We set R to be the kernel of p. Since R is a subgroup of a free abelian group
and thus a free abelian group as well, we obtain the desired free resolution of A. U

Definition 1.14.8 A
For two abelian groups A and B and for 0 - R — F — A — 0 the standard resolution of
A we define

Tor(A,B) :=ker(i®id: R® B— F ® B).

In general, ¢ ® id is not injective, thus Tor(A, B) is in general not trivial. Unfortunately,
the standard resolution constructed in Proposition is typically very large. We show that
we can calculate Tor(A, B) via an arbitrary free resolution of A. To that end, we prove the
following result.

Proposition 1.14.9. .
For every homomorphism f: A — B of abelian groups and for free resolutions 0 — R ——
F—A—0and0— R - F' — B — 0 we have:

1. There exist homomorphisms g: F' — F’ and h: R — R', such that the diagram




commutes.

If ¢’, b’ are other homomorphisms with this property, then there is a group homomorphism
a: F— R withioca=¢g—¢ and aoi=h—h.

2. For every abelian group D, the map h®id: R® D — R'® D maps the kernel of i ® id to
the kernel of ¢/ ® id. The restriction h & id|ker(i®id) is independent of the choice of g and
h. We denote this map by ¢(f, R — F,R' — F’).

3. For a homomorphism f': B — C the map ¢(f’ o f,R — F,R" — F") is equal to the
composition (f', R — F',R" — F")op(f,R — F,R — F’).

Note that we can view the morphism « in[1.14.9,1 as a chain homotopy between the chain
maps g, h and ¢’, b’ of free chain complexes

Proof.

e To show 1., let {z;} be a basis of F' and choose y; € F' such that p'(y;) = fp(x;). This
is posisble, since p' is surjective. We define g: F' — F” on this basis by g(z;) = y;. Thus
pog(z;) =p'(vi) = fp(z;). For every r € R we find p’og(i(r)) = fopoi(r) = 0. Therefore
g(i(r)) is contained in the kernel of p’ which is equal to the image of 7. In order to define
h we use the injectivity of i, thus h(r) is the unique preimage of g(i(r)) under ¢'. This
shows the first claim in 1.

e Given h, i/ and ¢, ¢ as in 1., we get for x € F that g(z) — ¢'(z) is in the kernel of p’ which
is the image of 7. Define a as (') "'(g — ¢’). Then by construction i'a = g — ¢’ and

i'(h—n)=(g9—¢)i=7ai.

Here, we first used that the square commutes and then the equation i'a = g — ¢'. As i is
injective, this yields the second relation h — b/ = «i.

e For 2., we consider an element z € ker(i ® id) C R® D. Then
(i'®@id) o (h®id)(z) = (g ®id) o (i ®id)(z) =0

and thus (h ® id)(2) is in the kernel of (i ® id). If A’ is any other map satisfying the
properties, then we find o as in 1. and compute

(W ®id)(2) — (h®id)(2) = (I — h) ®id)(2) = (a0d) ®id)(2) = (a ®id)(i ®id)(z) = 0.

e The uniqueness in 2. implies 3.

Corollary 1.14.10. }
1. For every free resolution 0 — R’ = F' — A — 0 and any abelian group D, we get a
unique isomorphism

o(idy, R — F',R — F): ker(i’ ® id) — Tor(A, D).

Thus we can calculate Tor(A, D) with every free resolution of A.
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9. Tor is functorial: if A & A’ and B % B’ are morphisms of abelian groups, we have
morphisms

Tor(f, g) : Tor(A, B) — Tor(A', B') .

Proof.
For the second statement, note that given a free resolution 0 — R - F' — A of A, the morphism

0)—>R®B—~F®B——>A®B——>0
lid@g lid@g lid@g
0—R®B' —F®B —A® B —0
induces a morphism ker(: ® idg) — ker(t ® idp/). O

Examples 1.14.11.
1. We compute Tor(Z/nZ, D) for any abelian group D using the free resolution 0 — Z —-»

Z — 7Z/nZ — 0. By Definition [1.14.8 and by Corollary [1.14.10, we have
Tor(Z/nZ,D) 2 ker(n ®id: Z® D — Z ® D).

AsZ ® D = D and as n ® id induces the multiplication by n, we get

Tor(Z/nZ, D) = {d € D|nd = 0} for all n > 1. We thus get the elements in D that are
n-torsion. For this reason, Tor is sometimes called torsion product.

2. From the first example we obtain Tor(Z/nZ,Z/mZ) = 7Z/gcd(m,n)Z, because the n-
torsion subgroup in Z/mZ is Z/ged(m, n)Z.

3. For A free abelian, Tor(A, D) = 0 for arbitrary D. To see this, note that 0 — 0 — A 2
A — 0 is a free resolution of A. The kernel is a subgroup of 0 ® D = 0 and hence trivial.

4. For two abelian groups A;, As, D there is an isomorphism
Tor(A; & Ay, D) = Tor(A;, D) & Tor(As, D).
Consider two free resolutions
0—-R —F,—A —0,i=1,2.

Their direct sum
O—>R1@R2—>F1@F2—>A1@AQ—>O

is a free resolution of A; & A, with
ker((i; @ i2) ® id) = ker(i; ® id) @ ker(ip ® id).
We extend the definition of tensor products to chain complexes of abelian groups:

Definition 1.14.12
Are (Cy,d) and (C.,d") two chain complexes, then (C, ® C’,dg) is the chain complex with

C.oCh= P ¢oc,

p+gq=n

and with dg(c, ® c;) = (dc,) ® ¢, + (—1)Pc, @ d'cl,.
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Lemma 1.14.13.
The map dg is a differential.

Proof.
The composition is

dg((dey) @ )+ (=1)Pc, @ d'c)) = 04 (=1)P"}(de,) @ (d'¢;) + (=1)P(dey) @ (d'¢,) + 0 = 0.
]

Remarks 1.14.14.
1. Let G be an abelian group, then let Cs be the chain complex that is concentrated in

degree 0, i.e. with
(Con = {OG e
Then for every chain complex (C\,d), the tensor product is
(Ci®Ca)n=0C,0G, dy=d®id.
In particular, for every topological space X,
S X)®Ce = 8.(X)®G=S.(X;G) .

This allows us to identify the singular chain complex with values in the abelian group
G with a tensor product of chain complexes. Similarly, for a CW complex X, we get
Ci(X;G) = Cu(X) ® Cg for cellular homology with values in G.

2. For every pair of spaces (X, A), we therefore introduce the chain complex
S X, A;G) = 5.(X,A) ® Cq.
3. Amap f: (C,,d) — (D, dp) induces a map of chain complexes
foid:C,eC. - D,C..

In particular, for every continuous (cellular) map we get induced maps on singular (cel-
lular) homology with coefficients.

G, *x=0

4. Note that, in generalization of proposition |1.2.18| we have H,(pt; G) = {0 40
R .

Definition 1.14.15
A chain complex C, is called free, if the chain group C,, is a free abelian group for all n € 7Z.

For example, the chain complexes S, (X, A) and C,(X) are free.

Theorem 1.14.16 (Universal coefficient theorem (algebraic version)).
Let C, be a free chain complex and GG an abelian group, then for all n € Z we have a split
short exact sequence

0— H,(C,) ® G — H,(C, ® G) — Tor(H,_1(C,),G) -0 .

In particular
H,(C,®G)= H,(C,) @ G® Tor(H,_1(C,), G).
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This theorem will be a consequence of the more general Theorem [1.14.19, Applying Theorem
1.14.16| to the singular chain complex C, := S,(X) of a topological space X, cf. Remark
1.14.14|1, we obtain the following:

Theorem 1.14.17 (Universal coefficient theorem (topological version)).
For every space X, there is a split short exact sequence

0— H,(X)®G — H,(X;G) — Tor(H,—1(X),G) = 0.
Therefore, we get an isomorphism
H,(X;G) =2 H,(X)® G & Tor(H,—1(X),G) .

Example 1.14.18.
For the real projective space X = RP?, we obtain

H,(RP*G) = H,(RP?) ® G @ Tor(H,_1(RP?),G) .
Recalling from Example [1.9.6/1 and Example [1.12.8
Hy(RP*) =7, H(RP*)=7; and HyRP*) =0

we find
Hy(RP?;G) =2 Hy(RP*) @ G @ Tor(H_1(RP?),G) 2 Z® G =G,
H(RP?%G) = H(RP?*) ® G @ Tor(Hy(RP?),G) =2 G/2G & 0= G/2G,

and
Hy(RP? G) = Hy(RP*) ® G @ Tor(H,(RP?),G) = Tor(Z/27, G).

This reproduces the findings in example [1.13.3]

The universal coefficient theorems [1.14.16] and [1.14.17] are both corollaries of the following
more general statement.

Theorem 1.14.19 (Kiinneth formula).
For a free chain complex C, and a chain complex C’ we have the following split exact sequence
for every integer n

0—>@p+q:n Hy(C\) ® Hq(cfk))\_>Hn<C* ® Cy)—D Tor(H,(C4), Hy(C}))—=0,

p+g=n—1
Le.
W(CooC)= @5 H)(C) @ Hy(CL)d @D Tor(H,(C.), Hy(CL)) .
pt+q=n p+g=n—1
The map A: D, ,—, Hp(Ci) ® Hy(CL) — H,(Ci @ C}) in the theorem is given on the

(p, ¢)-summand by
Allep] ® [g]) = [ep ® cf]

for ¢, € C}, and ¢, € C;. By the definition of the tensor product of complexes, this map is
well-defined.

Lemma 1.14.20.
For any free chain complex C, with trivial differential and an arbitrary chain complex, C’, A
is an isomorphism

Ao €D H,(C.)® H,(CL) = H,(C. ® CY).

p+g=n
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Proof.

e We abbreviate the subgroup of cycles in Cj with Z, and the subgroup of boundaries in Cj,
with B; and use analogous abbreviations for the complex C.. By definition 0 — Z; —

C, N B, 1 — 0 is a short exact sequence. Since Z, = C), the group Z, is free so that
tensoring Z, ® (—) is exact by Remark [1.14.11]3. Thus

0= 2,02, — Z,0Cy, — Z,® B, ; =0

is a short exact sequence. This implies that Z, ® Z; is the subgroup of cycles in Z, ® C; =
Cp, ® C. Summation over p + ¢ = n yields that the n-cycles in the complex C, @ C are

Zn(C,®Cl) = @Z@Z’

ptq=n

and the n-boundaries are given by

(C.ol)= P 2,9B,.

pt+q=n

e The sequence
0— B, — Z, — H,(C}) =0

is exact by definition. Tensoring with Z, is exact, since Z, is free. Tensoring and then
summing over p 4+ ¢ = n yields the exact sequence

0= P ZeB,— P 2,02, — P %, Hy(C) =0
p+g=n pt+g=n pt+g=n
The identification of Z,(C, ® C7) and B,(C, ® C,) in the previous part of the proof

implies that the right-most term is isomorphic to the nth homology group of the complex
C, ® C! and therefore

H,(C.2C) =2 @ 2,0 H,(CL)= €D Hy(C.) @ Hy(CL).

ptg=n ptqg=n

Lemma 1.14.21.
Let C be a chain complex of abelian groups. Then there exists a free chain complex F, and a
chain map ¢ : F, — C, which induces an isomorphism in homology, ¢, : H(F,) = H(C,).

Proof.
We already know from the exercises that there exists a free chain complex F, whose homology
is isomorphic to the homology of C,. Fix an isomorphism v, : H,(F,) — H.(C\).

Consider the diagram of short exact sequences

0 —— By (F.) —— Zy(F,) —— H,,(F.) —0
:an :50711 lwn
Y Y

0 Byo(C.) — Z(C) — H,\(C.) —0
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where we use the fact that Z,(F,) is free to lift 1, to a map ¢, which induces by restriction a

map 6,,. Since B,,_1(F) is free, the surjection C,,(F) KN B,,—1(F.) implies that there is a direct
sum decomposition C,(F,) = Z, @Y, such that d|y, : Y, = B,_1(F.). We use the fact that Y,
is free to lift
Y,— B, (F*)
soi: On—1
A

On —_— Bn—1<c*)

Then
Lp}L sy @i : Cu(F)=Z,dY, = C,

is the chain map inducing v in homology.

Proof. of Theorem [1.14.19]

e We consider again the short exact sequence 0 — 2, — C, N B,_1 — 0. Since B,_;
is free, this sequence is split. Tensoring it with C’(’] gives, by Lemma [1.14.4/2, an exact
sequence. Summing over p + ¢ = n gives the short exact sequence

0= P 2,00, — P GolC,— P B1®C,—0 (%)

p+g=n pt+g=n p+g=n
e We define two free chain complexes Z, and D, with trivial differential and chain groups
(Z)p=2p and  (Di)p =By .

Then the exact sequence (%) can be interpreted as a short exact sequence of complexes.
This gives a long exact sequence

= Hy(Do2C) 258 H(2,0C") — Ho(C.2C") — Ho(Do®C) 2% Hy 1(Z.2C7) = ...

Lemma |1.14.20| gives us a description of H,(D, ® C%) and H,(Z, ® C.) and therefore we

can consider d,,.1 as a map

5n+1 : @p+q:n+l HP(D*) ® Hq(ci) = @p—i—q:n—i—l Bp_l ® Hq(ci —
@erq:n Zp ® H‘](Ci) = ®p+q:n HP(Z*> ® HQ(C;)
with j: B, — Z,.

e We can cut the long exact sequence in homology in short exact pieces and obtain that all
sequences
0 — coker(d,41) — H,(C\, ® C.) — ker(d,) — 0

are exact. The cokernel of §,, is isomorphic to @ (Z,/B,) ® H,(C%) because the

tensor functor is right exact, thus

ptg=n

coker(d,,11) = @ H,(C,) @ H,(CY).

pt+q=n
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As 0 - B, — Z, — H,(C,) — 0 is a free resolution of the homology group H,(C.),
we obtain that

Tor(H,(Cs), Hy(CY)) = ker(j ®@id: B, ® H,(Cy) = Z, @ Hy(C;))

and therefore

D Tor(H,(C.), Hy(CL)) = ker(5,)

p+g=n—1

which proves the exactness of the Kiinneth sequence.

e We will first prove that the Kiinneth sequence is split in the case where both chain
complexes, C, and C, are free. In that case the sequences

0—Z%2,—+Cy,—B,.1—0, 02, —-C,— B, ;=0

are split and we chose retractions r: C, — Z, and r": C} — Z,. Consider the two com-
positions
7 Cp—> Zy = Hy(C.), 7 : Co—Z, — Hy(CY)

and view H,(C.) and H,(C}) as chain complexes with trivial differential. Then these
compositions yield a chain map

C.®C. =58 1.(C,) ® H.(C')
which on homology is
H,(C. ® Cl) — Hy(H(C.) ® Ho(CL) = €D Hy(C.) ® Hy(CL).
pta=n

This map gives the desired splitting.

If the complex C! is not free, chose by the preceding lemma a free chain complex F!,
together with a chain maps
' F— O

inducing isomorphism in homology. The naturality of the Kiinneth exact sequence gives
a commutative diagram

O_>®p+q:n Hy(Cy) ® Hq(Fi)/\—>Hn(C* ® F)—D Tor(H,(Cy), Hy(FY))—=0,
id. @, (id®v" )« Tor(id« %)

0 @p-i—q:n HP(C*) ® Hq(CL)A—>Hn(O* & Ci)—>@ TOI"(HP(C*), Hq(ci))—>07

ptg=n—1

p+g=n—1

Since id, and 1/, are isomorphisms, so are id, ® ¢, and Tor(id,, ¢,). Thus (id ® ¢'), is
an isomorphism and the two exact sequences are isomorphic. Hence both are split.

g

In the cases we are interested in (singular or cellular chains), the complexes will be free.
The splitting of the Kiinneth sequence is not natural. We have chosen a splitting of the short
exact sequences in the proof and usually, there is no canonical choice.
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1.15 The topological Kiinneth formula

Let X and Y be topological spaces. The Kiinneth sequence for the singular chain complexes
Cy = S.(X) and C = S,(Y) of two topological spaces states that

0= P Hy(X) @ Hy(Y) — Hy(So(X) @ Su(Y)) — @D Tor(H,(X), Hy(Y)) — 0

pt+g=n ptg=n—1

is exact. We will give a geometric meaning to the group H,(S.(X) ® S.(Y)) by showing that
it is actually isomorphic to H,(X x Y).

Lemma 1.15.1.
There is a homomorphism of chain complexes x: S,(X) ® Sy(Y) — Sp4(X x Y) for all
p,q = 0 with the following properties.

1. For all points zy € X, viewed as zero chains, and for any singular ¢-simplex g: A — Y
on Y, the product is the following g-simplex on X x Y

(o x B)(to, - - -, tq) = (w0, B(to, - - -, Tg))
Analogously, for all yy € Y and any singular p-simplex a: AP — X on X, we require
(@ x yo)(to, ..., tp) = (alto, ..., tp), %) € X XY .
2. The map x is natural in X and Y: for f: X — X' and ¢g: Y — Y’
Spta(f,9) 0 (a x B) = (Sp(f) 0 @) x (S4(g) 0 ).
3. The Leibniz rule holds:

d(ax f) =0(a) x B+ (—=1)Pa x 9(5).

The map X is called the homology cross product.

Proof.
For p or ¢ equal to zero, we define x as dictated by property (1). Therefore we can assume that
p,q = 1. The method of proof that we will apply here is called method of acyclic models.

e Consider first the specific topological spaces X = AP, Y = A? with the specific simplices
a = idap, and 8 = idaq. If the homology cross product idar X idaq of these simplices were
already defined, then property (3), the Leibniz rule, would force

O(idar X idae) = O(idar) X idas + (—1)Pidar X O(idae) =: R € Spiq—1(AP x AY).
For the boundary of this element R, we get
OR = 82(idAp) Xiqu—f-(—l)p_la(idAp) x@(iqu)+(—1)p8(idAp) Xa(iqu)—f—(—l)Qp_lidAp X@Q(iqu) =0

so R is a cycle. But H,,—1(AP x A7) = 0 because p+¢—1 > 1 and the space AP x A? is
contractible and therefore the complex S, (AP x A7) is acyclic, i.e. all its homology except
in degree zero vanishes. Thus R has to be a boundary, so there exists ¢ € S, (AP x A9)
with dc = R.

We pick one such ¢ and define the homology cross product as

idAp X iqu =C.
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e Now let X and Y be arbitrary spaces and a: AP — X, §: A? — Y arbitrary simplices.
Then S,(a)(idar) = o and S,(8)(idaq) = B and therefore binaturality (2) dictates

a X ﬁ = Sp(a)(idAp> X Sq(ﬁ)(lqu) = Sp+q(0é,6)(idAp X iqu).
By construction, this definition satisfies all desired properties.

0

Note that for spaces X, Y with trivial homology in positive degrees, the Kiinneth Theorem
1.14.19 yields that H, (S.(X) ® S.«(Y)) = 0 for positive n.

Lemma 1.15.2.
Suppose that C, and C! are two chain complexes which are trivial in negative degrees and
such that C,, is free abelian for all n and H,,(C%) = 0 for all positive n. Then we have

1. Any two chain maps f,,g.: C. — C. which agree in degree zero, fo = go, are chain
homotopic.

2. If fo: Cp — Cf is a homomorphism with f,(0C;) C OC] then there is a chain map
fv: Cy — C! extending fo.

Proof.
1. We will define a map H,: C,, — C}_, for all n > 0 with 0H,, + H,_10 = f, — gx
inductively. For n = 0 we can take Hy = 0, because fy = gog by assumption. Assume that

we have found Hj, for k < n — 1. Let {x;} be a basis of the free abelian group C,, and
define

Yi = [uli) = gn(w:) — Hy10(2;) € C,.
Then
=0 fu(xi) — Ogn(2:) — Hp20?(25) — fr10(2i) + gn-10(z;)
=0.

But the complex C” is acyclic by assumption. Therefore, y; has to be a boundary and we
define H, (x;) = z; by choosing some z; such that 0z; = y;. Using this definition of H, (z;)
and then the definition of y;, we find

(8Hn + Hn—la)(fﬂz) =Y + Hn—18($i) = fn(xz) - gn($1)

2. To show the second assertion, we define f,,: C,, — C’ inductively such that df, = f,_10
holds. Assume that {z;} is a basis of C,,. Then f,,_19(z;) is a cycle and thus there exists
y; with dy; = f,_10(x;), due to the acyclicity of C. We define f,,(z;) := y;. Then

8fn(xz) = Oy; = fn—la(ﬂfi)

so that (f,) is a chain map.

i

We next have to show a uniqueness statement for the chain map constructed in Lemma

LI5Sl
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Proposition 1.15.3.

Any two binatural families of chain maps fxy, gxy from S,(X) ® S.(Y) to S.(X x Y) which
agree in degree zero and send the zero chain xy ® yp € (S.(X) ® S (Y))o = So(X) ® Sp(Y) to
(x0,y0) € So(X X Y) are chain homotopic.

Proof.

e First we deal with the case X = AP and Y = A9 forp,q > 0. If f,g: S.(AP)® S, (A?) —
S« (AP x A7) are two chain maps then the complex S, (AP)® S, (A9) is free abelian and the
complex S, (AP x A7) is acyclic, so we can apply Lemma [1.15.2{and get a chain homotopy
(Hn)n,

H,: (S«(AP) @ S(A7))y —> Spt1(AP x A7)

with OH,, + H, 10 = f, — gn.

e Note that for arbitrary topological spaces X and Y binaturality of f and ¢g implies

fxyo(Si(a)®8.(8)) = Su(a, B)ofaras  and  gxyo(Si(a)®S.(B)) = Si(a, B)ogar aa

for all singular simplices a: AP — X, : A7 - Y.
We define

Hy: (Su(X)® (Y — Snar(X xY)
a ﬁ —> Sn+1<@, 6) e) Hn(idAp X iqu).

This is well-defined and by construction:

OH,(a® B) = 0S,+1(a, B) o Hy(idar ® idag) [Definition]
= Su(a, B)0H,(idar ® idaa) [Si(a, B) is a chain map]
= Sy, B) o (—H,—10(idar @ idaa) + fr(idar ® idae) — g5 (idar ® idag))
= f[ula®B) = gula® B) — H,—10(a ® B3).

For the last step, observe that
(91(04) = o dl = p(Oé) (idAp o dl)
implies o = S, (a)(idar 0 0) and thus

Sn(Oé, /8) o) n_la(idAp & 1qu) == Sn(Oé, 6) (O » P | (ldAp o) 8 X lqu + (—1)p1dAp (24 lqu O 8)
= H, 1(a®p)o(d®id+ (—1)Pid ® 9)
== Hn_18<04 & B)

where we used the definition of the differential and the definition of H,,_;.

We finally need to ensure the existence of a homotopy inverse.

Proposition 1.15.4.

1. There is a chain map S,(X X Y) — S,(X) ® S.(Y) for all spaces X and Y such that
this map is natural in X and Y and such that in degree zero this map sends (xo, o) to
o ®yp for all xg € X and yg € Y.
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2. Any two such maps are chain homotopic.

Proof.

e For the first assertion, let X = A™ =Y for n > 0 and set C, = S,(A" x A") and
ClL = S.(A") ® S.(A™). Set fo: Cy — C} as dictated by the condition. Then by Lemma

1.15.2| there is a chain map (fi)m, fm: Sm(A™ X A") — (S.(A") & S.(A™))n. For a
singular simplex a: A" — X X Y, we define

Jala) := (Su(p1 0 @) @ Su((p2 0 @)) © fu(Aan).

Here, Aan: A" — A™ x A" is the diagonal map viewed as a singular n-simplex Aan €
S, (A" x A™) and the p; are the projection maps X ¢— X x Y 25 Y

Su(A" x A") T (5,(A") @ 5.(AM),
ls*(a)@os*(a)
(Si(X XY)®S.(X xY)),
LS*(m)@S*(m)

(5:(X) @ Su(Y))n.

e The second assertion follows as in the proof of Proposition [1.15.3]

Theorem 1.15.5 (Eilenberg-Zilber).
The homology cross product x: S,(X) ® S, (Y) — S.(X x Y) is a homotopy equivalence of
chain complexes.

Proof.
Let f be any natural chain map S,(X X Y) — S.(X) ® S.(Y) from Proposition [1.15.4] with
fo(xo,y0) = To ® yp for any pair of points. Then the composition

Fol=x—):Su(X)®S.(Y) = S.(X)® S.(Y)

is a chain map that sends g ® 1y to itself. Using Lemma [I.15.2] for X = AP and Y = A? and
then extending by binaturality again, we get that the identity and f o (— x —) are homotopic.
Similarly we get that the composition (— x —) o f is homotopic to the identity. U

Corollary 1.15.6 (Topological Kiinneth formula).
For any pair of spaces X and Y the following sequence is split short exact

0= P H(X)@H(Y) — H (X xY) — 5 Tor(H,(X), H,(Y)) = 0.

pt+q=n pt+g=n—1
The sequence is natural in X and Y, but the splitting is not.

Examples 1.15.7.
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1. For the n-torus T™ = (S')" we get inductively
H;(T") = Z@) )
all Tor-groups vanish, since all homology groups are free.
2. For a space of the form X x S™ we obtain
H, (X xS") = H/(X) & Hy;—n(X).

Remarks 1.15.8.

1. There is also a relative version of the Kinneth formula. The homology cross product in
its relative form is a map

X1 Sp(X,A) @S, (Y,B) — Spig( X x Y, AXx Y UX x B)
and the corresponding relative homology appears in a topological Kiinneth formula.

2. In particular for A and B a point we get a reduced Kiunneth formula which is based on a
homology cross product

Sp(X) @ Sy (V) — S (X XV, X VY)

and in good cases (see Proposition D the relevant relative homology Hn(X XY, XVY)
is isomorphic to the homology H,.,(X AY') of the smash product X A\Y = X xY/X VY.

2 Singular cohomology

2.1 Definition of singular cohomology

Definition 2.1.1

A cochain complex of abelian groups is a sequence (C™),¢z of abelian groups C™ together with
homomorphisms §: C* — C™*! increasing the degree such that 6> = 0. The map ¢ is called
coboundary operator. The group

ker(5: C™ — C™1)
im(5: Cn=1 — Cn)

H(C*) =

is the nth cohomology group of C*.

If (C4, d) is a chain complex, we can define D" := C_,, and this is a cochain complex because
the fact that d lowers degree by one gives a map d: C_,, = D" — C_,,_; = D"*! increasing the
degree. We therefore do not need a theory of cochain complexes; it is just convenient to switch
to cochain notation.

Definition 2.1.2
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For two cochain complexes (C*,8) and (C*,9) a map of cochain complexes from C* to C* is a
sequence of homomorphisms f: C™ — C™ such that " od = 5o f* for all n.

n+1 fn+1 “n+41
crtt—(C

|,

cn I em.

Maps of cochain complexes induce maps on cohomology. In particular, we get for a short
exact sequence of cochain complexes a long exact sequence with functorial connecting homo-
morphisms, as a consequence of Proposition [1.5.5]

Definition 2.1.3
1. Let G be any abelian group and X a topological space. Then the abelian group
S™(X;G) :=Hom(S,(X),G)

is called the nth cochain group of X with coefficients in GG. In the special case G = Z, we
call S"(X) := Hom(S,(X),Z) the nth singular cochain group of X.

2. The dual § = 0* = Hom(0,idg) of the boundary operator 0 endows these groups with
the structure of a cochain complex.

3. The quotient group

ker(6: SM(X;G) — S"TH(X; @)
im(6: S X;G) = SMX;G))
is the nth cohomology group of X with coefficients in G.

H'(X;G) =

Remarks 2.1.4.
1. Explicitly, the differential on a G-valued singular n-cochain ¢: S, (X) — G is given by
precomposition:

ie): Sp(X) = G
a = (0a)

2. We evaluate 6%(p) on a singular (n + 2)-simplex §: A" — X:
0%()(B) = (8¢)(9B) = (") = 0 .
Thus 62 = 0 and we indeed have a cochain complex.

3. For a continuous map f: X — Y, denote the induced map S,(f) of singular chains by
f«- Then the dual map

S () =15 (V;6) = §°(X;6)
is defined as usual by precomposition: for ¢ € S*(Y;G) and o € S.(X),
F(@)(@) = p(fua) € G,
This is indeed a map S*(Y; G) — S*(X; G) of cochain complexes:
(00 f 0, a) = (fTp,0a) = (p, fda) = (p,0f.a) = (bp, fua) = (f*0p, )
for all chains a € S,(X) and cochains ¢ € S*(Y; G) and where we write (¢, o) := 9 («).
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4. Note that
(fTog™)p,a) = (g7¢, fa) = (e, gfa) = ((go [) e a) .
Thus S™(—; G) and H"(—; G) are contravariant functors from the category of topological
spaces and continuous maps to the category of abelian groups.

Definition 2.1.5
1. For two abelian groups A and G, and ¢ € Hom(A,G), a € A the Kronecker pairing is
the G-valued evaluation

(—,=): Hom(A,G)® A — G, (p,a) = ¢(a) € G.

2. For a homomorphism f: B — A and ¢ € Hom(A, G), we have f*(p) € Hom(B,G). On
b € B, this takes the value

(f*p,b) = (¢, fb) = (f(b)) € G .

3. For a chain complex C, of abelian groups and the cochain complex C" := Hom(C,, G),
we define a pairing with values in G'

(=, =) C"®Ch = Go®ar (p,a) =p(a).
4. In particular, for A = S,(X) a singular chain group and S™(X,G) = Hom(S,(X), G), we
get a Kronecker pairing with values in G

(——): S"X;G)®S,(X) = G.
5. For 0: S;41(X) — Sp(X) and a € S,,11(X) we get
(6p,a) = (p,0a) = p((a)).

Lemma 2.1.6.

Let C, be a complex of abelian groups and C" := Hom(C,,G) for some abelian group G.
The Kronecker pairing (—, —): C" ® C,, — G induces a well-defined pairing on the level of
cohomology and homology, i.e. we obtain an induced map

(= =) H(C")® H,(C\) = G .

Proof.
Let ¢ be a cocycle, ¢ = 0. Then
{p,a+0b) = (@, a) + (p,0b) = (p,a) + (6p,b) = (¢, a).

Thus (p, —) descends to homology. Assume that ¢ is a coboundary, ¢ = 0¥ and a is a cycle,
da = 0. Then we get

(p,a) = (0h, a) = (1, 0a) = 0.
Therefore (—, —) induces a well-defined G-valued pairing on H,(C.) and H™(C*). 0O

Changing perspective, this pairing induces a map
k: H"(C*) — Hom(H,(C\), G)

via k[p][a] := (¢,a). How much of the cohomology H"(C*) does the map k see, i.e. is it
surjective, does it have a kernel?
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2.2 Universal coefficient theorem for cohomology

Dual to Tor which was defined using the tensor product (—) ® (—), we consider a corresponding
construction for the functor Hom(—, —). Let R be a ring; for a short exact sequence of R-
modules

0-A-%B-25c-0

given an R-module G, the sequence of abelian groups
0 — Hom(C, G) LN Hom(B, G) B Hom(A,G) — 0

does not have to be exact. A problem can arise with respect to the surjectivity at the end.
As an example, consider the short exact sequence 0 — Z —— Z — Z/nZ — 0 for a natural
number n > 1. Then the sequence

0 — Hom(Z/nZ,7Z) = 0 — Hom(Z,Z) = Z -~ Hom(Z,Z) = Z

is exact, but multiplication by n is not surjective, so we cannot prolong this sequence to the
right with a zero.

Definition 2.2.1 '
Let A and G be abelian groups. For a free resolution 0 — R —+ F — A — 0 of A, we call

Ext(A, G) the cokernel of Hom(i, G): Hom(F, G) 4 Hom(R, G).

Remarks 2.2.2.
1. Ext comes from ’extension’, because one can describe Ext(A, G) in terms of extensions of

abelian groups.
2. As for Tor it is true that Ext(A, G) is independent of the free resolution of A.

3. Note that Ext(A, G) is covariant in G and contravariant in A: for homomorphisms f: A —
B and g: G — H we get morphisms of abelian groups

[ Ext(B,G) — Ext(A, G), g«: Ext(A, G) — Ext(A, H).
4. For any family of abelian groups (G;,i € I)
Ext(4, [ [ G:) = [] BExt(A, G))
i€l i€l

and

Ext(@D Gi, B) = [ | Ext(G;, B).
i€l icl
5. The group Ext(A,G) is trivial, if A is free abelian. In this case, chose R = 0 and

F = A. The free resolution 0 — A = A — 0 gives Ext(A, G) = coker(Hom(A4, G) RN
Hom(0,G)) = 0.

6. We compute
Ext(Z/nZ,G) = G/nG.

To this end, we use the free resolution 0 — Z - Z — Z/nZ — 0 and have to compute

the cokernel of
Hom(Z,G) — Hom(Z,G)

p = pn.—)
Identifying Hom(Z, G) = G via ¢ — ¢(1), the right hand side is identified with ¢(n.1) =
n.p(1).
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7. In particular, Ext(A, G) is trivial, if G is divisible, i.e. for all ¢ € G and n € Z\ {0} there
exists t € G with ¢ = nt. For example this holds if G is isomorphic to one of the groups

Q, R, Q/Z, or C.

8. For natural numbers n and m

Ext(Z/nZ,7/mZ) = 7 /gcd(n, m)Z.

To state the two main results of this section, we need two simple observations:

Lemma 2.2.3.
Let 0 = A5 B 5 C — 0 be a split short exact sequence of abelian groups. For any abelian
group G, the sequence

0 — Hom(C, G) i Hom(B, G) 4 Hom(A,G) — 0

is split exact.

Proof.
The sequence is exact at Hom(C, G) and Hom(B, GG) in any case, cf. one of the next exercises.
Chose a retract r: B — A for ¢, i.e. r ot =1id . Then

Hom(A,G) — Hom(B,G)
Y = por

is a section of ¢*. O

Theorem 2.2.4 (Universal coefficient theorem for cochain complexes).
Let G be an abelian group. For every free chain complex C, and C* := Hom(C,, G) the following
sequence is exact and splits

0 — Ext(H,_1(C,),G) — H"(C*) > Hom(H,(C,),G) — 0.

We specify to the singular chain complex, C,, = S,,(X) for a topological space X, which has
free chain groups.

Theorem 2.2.5 (Universal coefficient theorem for singular cohomology).
Let X be an arbitrary space. Then the sequence

0 — Ext(H,_1(X),G) — H"(X;G) - Hom(H,(X),G) = 0

is split exact, with k as defined after Lemma [2.1.6]

Proof. of Theorem [2.2.4]
e Let C, be a free chain complex and C* := Hom(C\, G). Then the sequence 0 — Z,, —

C, 2, B,,_1 — 0 is split exact, since B, is free as a subgroup of the free group C,, and
thus a section of 0 can be constructed. By lemma [2.2.3] the G-dual sequence

0—B"! —C"—2"=0
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is short exact. It gives a short exact sequence of cochain complexes, where we view B*
and Z* as cochain complexes with trivial differential. This yields a long exact sequence
on the level of cohomology groups

2 L L B (O — 2 L B — (%)

Here, 0 denotes the connecting homomorphism in the cohomological case. By the very
definition of the connecting homomorphism we get that 0 is the dual of the inclusion
in: By CZy, 0=1}:

C"——27"2 ¢

|s

n n+1
B"—=C

A preimage v € C" of ¢ € Z™ is any morphism v : C,, — G that restricts to ¢ on
the subgroup Z, of cycles. It is mapped to ¢ o d € C™*!. Here, only the value of 1) on

boundaries matters, we can thus replace 1) o d = ¢ o d. We are looking for ¢ : B, — G
such that @ o d = ¢ od. This is achieved by the restriction of ¢ to the boundaries B,,.

e We cut the long exact sequence (*) into the short one
0 — coker(iy ;) — H"(C*) — ker(i}) — 0
and hence we have to compute the kernel and the cokernel of i : Hom(Z,,G) —

Hom(B,, G).

e The exact sequence obtained from applying the left exact Hom-functor to the short exact
sequence 0 — B, % Z, = H,(C,) =0

0 — Hom(H,(C.),G) = Hom(Z,,G) ~= Hom(B,, G)
tells us that the kernel of ¢; is the image of 7* and due to the injectivity of 7* this is
isomorphic to Hom(H,(C,), G).
e The sequence .
0— Bn_1 E) Zn—l — Hn_l(C*) —0

is a free resolution of the homology group H,,_;(C,) and therefore the cokernel of i’ _; by
Definition equals Ext(H,_1(C,), G).
O

Examples 2.2.6.
1. We know from Example [1.12.8/2 that the homology of complex porjective space CP" is

free with
Z, 0<k<2n,k even,

0, otherwise.

Hp(CpP") = {
For free groups, the Ext-groups vanish by[2.2.25 and thus H*(CP") = Hom(H(CP"),Z).
The cohomology is in this example given by the Z-dual of the homology.
2. Recall from Proposition that
Y/ =0
A COER Sl
0  otherwise.

for n > 1. For later use we fix a class v, € H™(S") with (v, pn) = 1.
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2.3 Axiomatic description of a cohomology theory

Before we give an axiomatic description of singular cohomology, we establish some consequences
of some of the results we proved for singular homology.

Remarks 2.3.1.

1.

For a chain map f: C, — C. (such as the barycentric subdivision) the G-dual map
f* =Hom(f,G): Hom(C;,G) — Hom(C,, G)

is a map of cochain complexes.

I (Hy,: C, — C},)n is a chain homotopy, then the G-dual

(H" := Hom(H,,G): Hom(C,_,,G) — Hom(C,, G)),

n

is a cochain homotopy. Thus if 0H,, + H,_10 = f, — gn, then H"§ + §H" ™! = f* — g".

. We have seen in Lemma that for a split exact sequence 0 = By — By — B3 — 0

the dual sequence 0 — Hom(B3, G) — Hom(By, G) — Hom(B;, G) — 0 is exact. For
instance, if A is a subspace of X, then the short exact sequence of chain complexes

0= S.(A) — S (X) — Su(X,A4A) =0
is split. To see this, we define a retraction r,,: S,,(X) — S,(A) on a generator a: A" — X

via
if a(A™) C A
o) =400 Held) <4

0, otherwise.

Therefore 0 — S*(X, A) — S*(X) — S*(A) — 0 is a short exact sequence of cochain
complexes and gives rise to a long exact sequence in cohomology.

With the help of these facts we can show that singular cohomology satisfies the (Eilenberg-
Steenrod) axioms of a cohomology theory:

1.

The assignment (X, A) — H"(X, A) is a contravariant functor from the category of pairs
of topological spaces to the category of abelian groups.

If fg: (X, A) — (Y, B) are two homotopic maps of pairs of topological spaces, then

H™(f)=H"(g9): H*(Y,B) — H"(X, A).

. For any subspace A C X there is a natural connecting homomorphism 0: H"(A) —

H""(X, A) increasing the degree.

. For any subspace A C X we get a long exact sequence

o H X A) — HYX) T gy 2

. Excision holds, i.e. for W Cc W C AcAcX

H"(i): HY(X,A) = H" (X \ W, A\ W), for all n > 0.
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6. For the one-point space pt, we have

G, n=0,

H(pt) = {O n # 0.

This is called the axiom about the coefficients or the dimension axiom.

7. Singular cohomology is additive under disjoint union:
HY(| |x) = [[E"(X).

iel el

For singular cohomology with coefficients in G we have an analogous set of axioms. There
are important so-called generalized cohomology theories like topological K-theory or cobordism
theories that satisfy all axioms but the dimension axiom. (For K-theory on a point, we get the
integers in every even degree.)

2.4 Cap product

The rough idea of the cap product is to evaluate a (relative) cochain of smaller or equal degree
on a piece of a (relative) chain to get a relative chain of smaller degree. (This is a partial
evaluation of cochains on chains.)

Definition 2.4.1
Let a: A™ — X be a singular n-simplex on X and let 0 < g < n.

e The (n—q)-dimensional front face of the singular simplex a on X is the (n—q)-dimensional
singular simplex on X

Fla)=F"%a)=aoi: A" 7 A" 5 X
where i is the inclusion i: A" % — A™ with i(e;) =e; for 0 < j <n —q.

e The g-dimensional back or rear face of of the singular simplex a is the g-simplex

R(a) = Ri(a) =aor: AT A" 23 X

where r: A? — A" is the inclusion with 7(eg) = €n—q, - ..,7(eq) = €n, 1., 7(€;) = en_(g—s)-

Definition 2.4.2
Let 0 < ¢ < n. Let R be an associative ring with unit. We define

N: 89X, A; R)®S.(X, 4; R) = Hom(S,(X, A), R)®S(X, A)®R — Sp_o( X)®R = Sp_o(X: R)

anN(a®r):=F"a) ® (a, RY(a)) - 7.

Remarks 2.4.3.
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1. The map N is well-defined for relative (co-)homology for the pair (X, A): for a = o’ €
Sn(X,A), ie. a=d + b with im(b) C A we get

aN(a@r)=an((d+b)®@r)=an(d @r)+ F(b) ® (a, R(b))r.

The image of R(b) is contained in A C X, but @ € Hom(S,(X, A), R), thus a: S,(X) — R
with afg,4) = 0 and (o, R(b)) = 0.

2. We can express the (n — ¢)-dimensional front face of a in terms of the face maps from
Definition [[.2.9) as
F"(a) = 0p—gt10...00y(a).
Similarly,
Ri(a) =0yo...00(a) =0y ‘a .

3. There is a more general version of the cap product. Suppose that there is a pairing of
abelian groups
GG — G ;
then we can define

N: SYUX, A;G) ® Su(X, A;G') = Sp_y(X; G").

Proposition 2.4.4.
1. The Leibniz formula holds for the cap product: for o € S9(X, A), we have

daN(a®r))=(0a)N(e®@r)+ (—1)an (da@ ).

2. Naturality: for a map of pairs of spaces f: (X,A) — (Y,B), we have a map
fer Su(X, A) — S.(Y, B) of chain complexes and a map f*: S*(Y, B) — S*(X, A) cochain
complexes. Given a ® r € S,(X,A) ® R = S,(X, A; R) and 8 € Hom(S,(Y, B), R), we

have

L B)yn(ar)) =0 (fula)@r) .

For the proof, we suppress the tensor product with R. It just adds to notational complexity.

Proof.
1. For the first claim we calculate the left hand side:
Iana)=0(F"(a) ® (o, R'(a)))
F"(a)) @ (a, R(a))

3

—4q

(=1)'0:(On—gs1 .. 0 On(a)) ® (e, 5 *(a))

[e=]

This has to be compared to the two terms on the right hand side:

(ba)Na=F""Ya)® (6o, R1(a))
= F" " Ya) ® (o, OR" ! (a))
PN (1) 00 0 Bu(a) ® (a, 0,8y (a)).

1=0
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and, noting that 0;a is a (n — 1)-chain

anNda= Z(—l)ja Nodja

7=0

_ Z )Y F"19(8;0) @ (o, RY(D;a))
- Z 1)/ F"179(9;a) ® (a, R(9;(a)))

2132 Z(_njan_q 0...00,100;a® (a,d" " 9;a).

§=0
In order to get the result, use the simplicial relations 9;0; = 0;-10; for 0 < j <i <

2. For the claim about naturality, we note that f,R = Rf, and f.F = F'f, and plug in the
definitions to obtain

FF(B) na) = fu(F(a) @ (5, R(a)))
= [+(F(a) @ (8, fR(a)))
= F(f.(a)) ® (8, R(f.(a))))
= B0 fila)

Remark 2.4.5.
From the Leibniz formula, we conclude the following properties of the cap product:

e A cocycle cap a cycle is a cycle.
Indeed, for a cycle ¢ with dc = 0 and for a g-cocycle e with de = 0, we find

dleNnc)=(de)Nc+(—1)%en (dc) =0

e A cocycle cap a boundary is a boundary.
Indeed, for a g-cocycle e with de = 0 and a boundary b = Jc, we find from the Leibniz
rule

den(=1)c)=(de)N(=1)c+enb=enb
so that the cap product e N b is a boundary.

e A coboundary cap a cycle is a boundary.
Therefore we obtain the following result:

Proposition 2.4.6.
The cap product induces a map

N: H(X,A;R)® H,(X,A; R) — H,_,(X; R)

via

[o] N[a] := [F(a) ® (o, R(a))]
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Examples 2.4.7.

1. Let R be a ring and consider 1 € S°(X; R). This is the cochain with value 1(a) =1 € R
for all 0-simplices a: A® — X. We claim that the cap product obeys 1 Na = a for any
singular simplex a : A" — X. Indeed, we have ¢ = 0 and thus F'(a) = a. For the rear
face, we have R(a)(eo) = a(ey). Therefore, 1Na=a® (1,a(e,)) = a® 1 and we identify
the latter with the n-simplex a.

2. For a space X and a cochain a € S™(X; R) and a chain a € S,(X) of same degree, we
have ¢ = n and thus F(a)(ep) = a(eg) € X and R(a) = a. We find

anNa=ale) ® (a,a) .

If X is path-connected, then [a(ey)] € Ho(X) = Z is a generator which we identify with

1 € Z. In this sense, the cap product aNa generalizes the Kronecker pairing of S™(X; G)
and S,,(X) with values in G, cf. Definition 2.1.54.

3. There is also a version of the cap product of the form

N: H(X; R) ® Hy(X, A; R) — H,_ (X, A; R).

Remark 2.4.8.
We explain the notation N. We take a 2-torus T?. Its first homology is H,(T?) = Z* and
generated by the class of a meridian b C T? and of a longitude a C T?. The second homology
H,(T?) = Z is generated by the class of the singular 2-simplex o : A? — T2 that maps the
boundary A, to ab(a~'b™1). We find F!(c) = a and R'(c) = b.

We consider the class 8 € H'(T?) = Hom(H,(T?),Z) 2 Z & Z dual to [b] € H,(T?). Then
fNo=F'c)®(B,R(c)) = a can be represented by the longitude a which is transversal to
the meridian b.

2.5 Cup product on cohomology

In the following, let R be a commutative ring with unit. We will consider homology and co-
homology with coefficients in R, but we will suppress the ring R in our notation, so H, (X, A)
will stand for H, (X, A; R) and similarly S,(X, A) is S, (X, A; R). We will use analogous ab-
breviations for cochains and cohomology. Sometimes, if we have to be explicit, we denote the
multiplication in R by pu.

We recall from Proposition that an Eilenberg-Zilber map is a homotopy equivalence
of chain complexes

EZ: S (XXY:XxBUAXY)— 5/(X,A)® S.(Y,B)

We use this structure in a first step to associate to a pair, consisting of a cochain on X and of
a cochain on Y a cochain on the product X x Y:

Definition 2.5.1
For a (relative) cochain o € SP(X,A) on X and a (relative) cochain € S1(Y,B) onY the

cohomology cross product o X (3 or external cup product is the (relative) (p + q)-cochain on
X XY

axfB:=po(la®@B)oEZe SPT(X xY, X x BUAXY)
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Thus
Sp(X XY; X XxBUAXY)

EZ N

o~ axf
®p’+q’:n Sp/ (X, A) & Sq’ (}/’ Bj ~

~
~

~
~
~
~

Sp(X,A) ® S,(Y, B)

a®p

Remarks 2.5.2.

1. Since the Eilenberg-Zilber map is natural, the cohomology cross product is natural, i.e.
for maps of pairs of spaces f: (X, A) = (X', A"), g: (Y,B) — (Y', B") we have

(fy9) (ax B)=(f"a) x (g°B).

2. For the Kronecker pairing and for cohomology classes a € HP(X, A) and € HI(Y, B)
and homology classes a € H,(X, A) and b € H,(Y, B), we have by definition of a x /3

{ax B,axb) =(a,a)(B,b).
3. For 1 € R and thus 1x € S°(X, A) and 1y € S°(Y, B)
Ix x B=p5(B), axly=pi(e)
where p; (i = 1,2) denotes the projection onto the ith factor in X x Y. Indeed,

<1 ><5>a><b> = <17a><57b> = </8ab>

and

p;ﬁ(% b) =0 Op2(a,b) - ﬂ(b) :

We next use the cohomology cross product in order to obtain a multiplication on the graded
abelian group H*(X, G). Consider the diagonal map

A X — XxX
r — (z,7)

as a map of pairs
A: (X,AUB) - (X xX, X xBUAxX).
Definition 2.5.3
For « € H?(X, A) and € Hi(X, B) we define the cup product of & and [ as
aUp=A(axp).
HP(X,A)® HY(X,B) —> HP"(X x X, X x BUA x X)

-
—
-
=~ A*
—
U T~

HP+(X, AU B)

Conversely, we can express the cohomology cross product via the cup product:
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Proposition 2.5.4.
Let X and Y be topological spaces. Consider the projections

pr: X XY =X and py: X XY =Y.

Let « € H?(X) and 5 € HY(Y') be cohomology classes. Then the external cup product satisfies

ax f=pi(a) Ups(B) ,

where the cup product is on the product space X x Y

Proof.
Since by Remark [2.5.2/3, we have pj(a) = a x 1y and p5(5) = 1x x 3, we find

pi(a) Upy(B) = (a x 1y) U (1x x ).

Here, o x 1 and 1 x 3 live in the cohomology of X x Y and the cup product is to be taken
on the product space X x Y. By Definition the cup product is the pull-back of the cross
product by the diagonal. Here, Axyy: X XY — X XY x X x Y. Therefore, the above is equal
to

A yv((axly)x (1x x 3)) =a x S.

In the definition of the cup product, the map

S,(X) 25 S,(X x X) 2 5,(X) @ S.(X)

enters. The Eilenberg-Zilber map was unique up to homotopy. We will get a simple explicit

formula of the cup product by choosing a simple morphism of complexes that is still homotopy
equivalent.

Definition 2.5.5
A diagonal approximation is a natural chain map D: S,(X) — S.(X) ® S.(X) such that
D(z) =z @ x for all O-chains x € Sy(X).

With the method of acyclic models, cf. Section [1.15] one can prove:

Proposition 2.5.6.
Any two natural diagonal approximations are chain homotopic.

Definition 2.5.7
The Alexander-Whitney map is the diagonal approximation

AW(a) = Y F*(a) ® R(a) € S.(X) ® S.(X)

p+q=n

for a € S, (X).

Remarks 2.5.8.
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1. It is obvious that AW is a natural chain map and this map yields a cup product for

a€ HP(X,A) and g € HY(X, B)

(@UB)(a) =po(a®B)AW(a) = po(a® )3, _,(F” (a) ® R (a))
(=DMa(F*(a))5(R(a)) -

2. From the formula, we see that U is associative and distributive on cochain level and not
just on the level of cohomology groups. Also a graded Leibniz rule immediately follows:
for « € HP(X) and € H*(X), we have

daUpB)=(0a)Upf+(—1)PaUdp .
It implies that the cup product is well-defined in cohomology.

3. But note that it does not give a (graded) commutative product on singular cochains.
(The cup product is homotopy commutative and in fact it is homotopy commutative up
to coherent homotopies: it is an F-algebra.)

Proposition 2.5.9.
Let X be a topological space and «, 3,y be cohomology classes on X. The cup product satisfies

1. Associativity:
aU(BUy) =(aUpf)Ur.

2. (Graded) commutativity:
aUpB=(—DPlgua.

3. Compatibility with the connecting homomorphism 9: H*(A) — H*™'(X, A) in relative
cohomology and ¢ : A — X, we find for « € H*(A) and f € H*(X):

IaUi*f) = (0a)Up € H (X, A).
4. Naturality: For f: X — Y and «, 5 € H*(Y):
[flaup)=faufp.

Proof.

Associativity and distributivity have already been discussed. Naturality follows from the
naturality of the external cup product. Graded commutativity follows from an explicit chain
homotopy that is constructed in [Hatcher, Theorem 3.14]. O

Using the relation
ax = piaUpyf
from Proposition that expreses the external cup product in terms of the cup product on
the product space X x Y, we conclude:

Corollary 2.5.10.
1. The cohomology cross product is associative

ax (Bxy)=(axp)xy

on the level of cohomology groups.
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2.

3.

It satisfies a graded version of commutativity. The twist map 7: X x Y — Y x X yields
on cohomology
ax B =(=DBl 3 x a).

The Leibniz formula holds,
S x B) = (6a) x B+ (=1)*la x (68).

Here, || denotes the degree of «.

Proposition 2.5.11.

1.

2.

For all pairs of spaces (X, A) the cohomology groups H*(X, A; R) have a structure of a
graded commutative ring with unit 1 € H°(X, A; R).

The graded ring H*(X, A; R) acts on the graded group H.(X, A; R) via the cap product
H (X, AR @ H(X,A;R)2a®a+— aNa,

ie.1Na=a, (aUB)Na=an(fNa). Thus H.(X, A; R) is a graded module over the
graded ring H*(X, A; R).

Examples 2.5.12.
Many cup products are trivial for degree reasons.

1.

Let S™ be a sphere of dimension n > 1. We know from Example [2.2.6/2 that H°(S") =
Z = H™(S™) and the cohomology is trivial in all other degrees. We have 1 € H°(S") and
v, € H"(S™). We know that

11Uy, =v,=v,Jl and 1Ul=1

but v,Ur, € H?*"(S") = 0 and thus vanishes. Thus, H*(S") has the structure of a so-called
graded exterior algebra with one generator v, in degree n, H*(S") = Az (v,).

More generally, if X is a CW complex of finite dimension, then o« U 8 = 0 for all «, 3 for
|a| + | 5] big enough.

. In particular, H*(X) often has nilpotent elements: if

a":=aU...Ua=0,

r

then commutativity implies (¢ U 8)" = £a" U " =0 for any 8 € H*(X).

. Assume that o € HP(X; R) with p odd. Then

o (—1)p2a2 =—a?,

where we first used the graded commutativity 2. Therefore 202 = 0 and if R is a
field of characteristic not equal to 2 or if R is a torsionfree commutative ring, then a? = 0.

Consider X = X; V X5 and assume that X;, X, are well-pointed. Then by Proposition

9.7
H*(X) = H*(X;) x H*(X5)

as rings. For a« = oy + a9 and § = f; + (2 with ay, §; € H*(X;) in positive degrees, the
cup product can be shown to be

aUpf = (a1 +ax) U (B4 f2) =g UP + U Ps.
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6. If X can be covered like X = X; U ... U X, with H*(X;) = 0 for * > 1 and X; path-
connected, then in H*(X) all r-fold cup products of elements of positive degree vanish.
We prove the case r = 2; the general claim then follows by induction. So assume X =
X7 UX, such that the X; have vanishing cohomology groups in all positive degrees and let
ij: X; = X be the inclusion of X; into X (j = 1,2). Then for all « € H*(X), 7}(a) = 0.
Consider the exact sequence

HY (X, X;) — H*(X) -5 H*(X;) .

Therefore, for any o € H*(X), there exists o’ € H*(X, X;) that is mapped isomorphically
to a. Similarly, for § € H*(X) there is an ' € H*(X, X,) that corresponds to . The
cup product aU 3 then corresponds to o/ U " but this is an element of H*(X, X; U X,) =
H*(X,X) = 0.

7. Consider a product of spheres, X = S" x ™ with n,m > 1. The Kiinneth formula and
the universal coefficient theorem imply that as an abelian group

H*(S" xS™) = H*(S") @ H*(S™).
We have four additive generators
1x1, ap:=v, X1, B :=1Xv, and  Yyim = Vp X Upp.
The square o2 is trivial for degree reasons:

2=, x 1)U, x1)=(v,Ur,) x (1U1) =0.

n

Similarly, 8% =0 =~2,,,. But the products

A U By = VUn X Uy = Yoo and B Uay, = (=)™ Yam
are non-trivial. This determines the ring structure of H*(S™ x S™).

8. Additively, as a graded abelian group, this is isomorphic to the cohomology ring H*(S" V
S™ v §™*™) which has generators &, 3, and 7,11 in degrees n,m and n + m. However,
by 5. . .

G UBm = (4, +0)U0+8,) =0+0=0
so that the cohomology ring H*(S" x S™) is not isomorphic to the cohomology ring

H*(S™V S™V S"™) as a ring. Thus the graded cohomology ring is a finer invariant than
the cohomology groups.

Note that the cohomology rings of the suspensions 3(S" x §™) and X(S™ Vv §™ Vv §"t™) are
isomorphic (cf. exercise). But here, we actually have

S(S" x §™) =~ $(S™ v §™ v ST,

2.6 Orientability of manifolds
We now consider topological spaces with more properties.
Definition 2.6.1

A topological space X is called locally euclidean of dimension m, if every point x € X has an
open neighborhood U which is homeomorphic to an open subset V' C R™.
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e A homeomorphism ¢: M DU — V C R™ is called a chart.

e A set of charts is called atlas, if the corresponding U C X cover X.

Example 2.6.2.
Consider the line with two origins, i.e.

X ={(z,)|zr e R} U{(z,-1)|x e R}/ ~, (x,1) ~ (z,—1) for z # 0.

Then X is locally euclidean, but X is not a particularly nice space. For instance, it is not
Hausdorff: one cannot separate the two origins.

Definition 2.6.3

A topological space X is an m-dimensional (topological) manifold (or m-manifold for short) if
X is a locally euclidean space of dimension m that is Hausdorff and has a countable basis for
its topology.

With this definition, topological manifolds are paracompact, i.e. every open cover has a
locally finite open refinement.

Examples 2.6.4.
1. Let U C R™ an open subset, then U is a topological manifold of dimension m.

2. The n-sphere S" C R"*! is an n-manifold and S" = (S*\ N) U (S™\ S) is an atlas of S™.

3. The 2-dimensional torus 7= S' x S' is a 2-manifold and more generally, the surfaces F),
are 2-manifolds. Charts can be easily given via the 4g-gon whose quotient F} is.

4. The open Moébius strip [—1,1] x (—=1,1)/ ~ with (=1,¢) ~ (1,—t) for —1 <t < 1is a
2-manifold.

Let M be a connected manifold of dimension m > 2. We denote the open charts by U, C M.
Without loss of generality we can assume that the coordinate patches are homeomorphic to
open balls in R™:

0: Uy — D™ C R™ .
For any z € M, we can find a chart ¢ : U, = D™ with ¢(z) = 0. Excision for (M \ U,) C
(M \ {z}) C M tells us that for all z € M

Hp (M, M\ {}) & Hyp(Uy, Uy \ {2}) 2 Hpp (D™, D™\ {0}) 2 H,py (D™ {0}) = Z

for m > 2. Here the chart ¢ was used for the second isomorphism. Since we have fixed in
Definition a generator in H,, (D™ \ {0}) = H,,_1(S™ '), any chart provides us with a
generator in H,,(M, M \ {z}).

For a triple B C A C M, there are maps of pairs
opa: (M,M\A)— (M,M\ B) .

In particular, for z € U C M, we get a map of pairs
Ozv: (M, M\ U) — (M, M\ {z}) .

Definition 2.6.5
Let M be an m-manifold.
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1. A choice of generators o, € Hy,(M, M \ {z}) for all x € M is called coherent, if for all
x € M there is an open neighbourhood U of x and a class oy € H,,(M, M \ U) such that
for all y € U we have that (0,)«00 = 0y.

2. An m-manifold M is called orientable (with respect to homology with values in Z), if
there exists a coherent choice of generators o, € Hp,(M, M \ {z}).

3. If such a choice is possible, then the family (o,|x € M) is called an orientation of M.

In the sequel, we will write g, ¢ also for the map on homology, i.e. we drop the lower star
in (sz,U )*

Remarks 2.6.6.

1. Assume that U is a small ball in M so that (0,v)s : Hpn(M, M\ U) = H,,(M, M\ {z})
is an isomorphism for each x € U. For a coherent choice of generators, we have for all
x1,T9 € U the compatibility condition

01’2 = QZ’Q,U o (KQ$1,U>71<0$1)'

H,,(M,M\U)
Oz, € Hpp(M, M\ {x1}) Hy (M, M\ {z2}) 3 04,

2. Given an orientation (o,|z € M), the family (—o,|x € M) is an orientation of M as well.

Example 2.6.7.

1. If M is the open Mébius strip and you pick a generator o, € Ho(M, M \ {z}) and you
walk once around the Mobius strip, you end up at —o,.

2. If we choose other coefficients, these problems can disappear. For instance for G = Z/27Z
there is no problem to choose coherent generators for Hyo(M, M \ {z};Z/27) = 7./27, so
the Mobius strip is Z/2Z-orientable. In general, Z-orientability implies Z, orientability.
The converse holds for p an odd prime.

Orientability can also be considered for more general homology theories.

3. Now, we consider integral coefficients again. Suppose that the family (o.|x € M) is an
orientation of M. In this case, we want to obtain a global class oy € H,,(M;Z) = H,, (M),
an orientation class, that determines the orientation in the sense that

Ot = 0p: Hiyn(M) — Hy (M, M\ {z}), o0.(om) =0 .

For example, for RP?, we have Hy(RP?) = 0 by Example and cannot have such a
class.

For questions of orientability, compact subsets play a particularly important role. We will
derive a global characterization of orientability for M compact in Theorem [2.6.11

Definition 2.6.8
Let K C M be a compact subset of M. We call a class ox € H,,(M,M \ K) an orientation of
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M along K, if the collection of classes 0, = (0. x)«(0K) for all x € K constitutes a coherent
choice of generators for all x € K.

Clearly, if we have a global class o), € H,,,(M), then we get coherent generators o, for all
x € M and also a class ox = (0x . )«(0n) as above for all compact K C M.

Lemma 2.6.9.
Let M be a connected topological manifold of dimension m and assume that M is orientable.
Let K C M be compact.

1. Then H,(M,M \ K) =0 for all ¢ > m

2. Let a € Hy, (M, M\ K). Then a is trivial, if and only if (0, x).(a) =0 for all z € K.
In particular, if M is compact, then H (M, M \ M) = H, (M) =0 for ¢ > m.

The following method of proof is a standard method in the theory of manifolds.

Proof.

1. We first show that, if the two claims hold for compact subsets A, B C M and for AN B,
then they hold for the union A U B.

Consider the following part of a relative Mayer-Vietoris sequence, cf. Theorem [1.8.6}

0 = Hpp(M,M\ (ANB)) — H,(M,M\ (AU B)) >
H,(M, M\ A) & H,(M,M\ B) % H,(M,M\ AN B)
For n > m, the leftmost zero comes from our assumption 1. on ANB. All terms H; (M \ (AU
B)) with ¢ > m appear between terms equalling zero, hence are zero. This shows the first

claim for AUB. If a class a € H,,(M \ AU B) has zero image in all H,,(M, M \ {x}), then
its images under @, as restrictions, have the same property, hence are zero by assumption.

2. First, consider the special case when M = R™ and K is conver and compact in M. In
this case we can assume without loss of generality that K C D™. We calculate

Hy (M, M\ K) = H,(R™,R™\ K) =~ H, (D™, D™\ z) = 0, for ¢ > m.

All identifications are isomorphisms also for ¢ = m and this gives the second claim as
well.

3. Using the statement in 1. and induction shows that claim for the case when M = R™ and
K =K,U...UK, is a union with K; convex and compact, as in 2.

4. Let M = R™ and let K be an arbitrary compact subset and let a € H (M, M \ K) with
g > m. Choose a chain 1 € S,(R™) representing the class a. The boundary of 1, 9(v)),
has to be of the form

y4
O() =D N
j=1

with finitely many (¢ — 1)-simplices 7;: A" — R™ \ K with values in R™ \ K. As the
standard simplex A?"! is compact, the union of the images

l
Un@arh) cr\ K
j=1
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is compact as well.

Hence, there exists an open neighborhood U of the compact subset K in R™ that does

not meet the simplices:
¢

U Tj(Aq_l) NU =a.

j=1
Therefore, the specific g-chain 1) on R™ also defines a cycle in S,(R™,R™\ U); let a' €

H,(R™ R™\ U) be the corresponding class. Since the classes a and o’ are defined by the
same cycle, we have

(QK,U)*(GI) = a.

To get compact convex subsets as in 3., choose finitely many closed balls By, ..., B, C R™
with B; C U for all i and K N B; # & such that K C |J,_, B;. Consider the chain of
restriction maps

oy B;,U 0K, B,

(R™,R™\ U) (R™, R™\ Uiy Bi) (R™,R™\ K).

Define a” as a” := (o B, v)«(a’). Note that (ok,j5,)«(a") = a.
The closed balls B; are convex and compact subsets of R™ and therefore by 3.
(QUBi,U)*(a’) =0=2d", forall g >m

and hence also a = 0. This shows the first claim for all compact subsets of R™.

For the second claim, let ¢ = m and assume that (¢, x)«(a) = 0 for all z € K. We have
to show that a is trivial. We express (0,,x)«(a) as above as

(Qx,K)*(a) = (Q@K)* o (QK,UB,‘)*(CLH} = (Qm,UBi)*(aH) =0

for all x € K. For every x € B; N K the above composition is equal to (0.,5;)« ©
(0B,,uB;)«(a"), but (0. 5,) is an isomorphism and hence (¢p,y5,)«(a"”) = 0. This im-
plies (0y,8,)« © (0B,,UB,)«(a") = 0 for all y € B; and in addition (g,;5,)«(a”) = 0 for all
y € U B;. According to case 3., this implies that a” = 0 and therefore a = (0x5,)+(a")
is trivial as well.

. Now let M be an arbitrary manifold. Suppose that the compact subset K is contained in a
domain U, of a chart, i.e. K C U, = R™. Therefore, by excision for M\U, C M\ K C M

H,(M,M\ K)= H,(U,,U, \ K) = H,/(R™,R" \ im(K)).
As the image of K is compact in R™, the claim follows from 4.

. If both the manifold M and the compact subset K are arbitrary, then write K = K,, U
...UK,, and each K, contained in the domain U,, of a chart. Then 5. and 1. imply the
claim.

g

Proposition 2.6.10.

Assume that M is oriented with (o, € Hy,,(M, M\ {z} |z € M). Let K C M be any compact
subset. Then there is a unique orientation of M along K, which is compatible with the orien-
tation of M, i.e. there is a unique class ox € H,,,(M, M \ K) such that (9, k)«(0x) = 0, for all
r e K.
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Proof.

e First we show uniqueness. Let o and o0k be two orientations of M along K. By assump-
tion we have that

(QZ‘,K)*(OK> - (Qz,K)*(0K> = (Qz,K)*(OK - 5K) )

on the other hand, this equals 0, — 0, = 0. According to Lemma [2.6.9/2 this is only the
case if o — 0 = 0.

e In order to prove the existence of ox we first consider the case where K C U, = D™
and hence M \ U, C M \ K. Let x € K. We denote the isomorphism H,,(M,M \ U,) =
Hpy (M, M\ {z}) by ¢..

We define ox as

ox = (exv.)+((6;)(02)).

e For K = K; U Ky, with K; contained in the codomain of a chart, the previous argument
ensures the existence of classes ox, € H,, (M, M \ K;) and ok, € H,,(M, M \ K,). Let
Ky = K; N Ky and consider the Mayer-Vietoris sequence

0— Hp,(M,M\ K) LA H, (M, M\ K\)® H,,(M, M\ Ky) - H,,(M, M\ K,) —
The uniqueness of the orientation along the intersection Ky implies that

H(OKNOKz) = (QKO,Kl)*(OKl) - (QKO,K2)*<OK2) = 0.
By exactness, there is a unique class ox € H,,(M, M \ K) with i(ox) = (0K, , 0K, )-

e For the general case we consider a compact subset K and we know that K = K;U...UK,
with K; C U,,. An induction then finishes the proof.

g

Theorem 2.6.11.
Let M be a connected and compact manifold of dimension m. The following statements are
equivalent:

1. M is orientable,
2. There is an orientation class oy € H,,(M;Z),

3. Hy(M;Z) 2 7.

Proof.
e Proposition [2.6.10| yields that (1) implies (2).

e Now assume that (2) holds, thus there is a class oy € H,,(M) restricting to the lo-
cal orientation classes o,. Then the class o,; cannot be trivial, because its restriction
(0x,M)<0M = 04 is a generator and hence non-trivial. Furthermore, o) cannot be of finite
order: the relation koy; = 0 implies ko, = 0 for all x € M, contradicting the property
that o, generates the free abelian group H,,,(M, M \ {z}).
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Let a € H,,(M) be an arbitrary element. Thus (0, )«(a) = ko, for some integer k. As
the o, are coherent in x, this £ has to be constant on the connected manifold M. We let
b := kop — a and find (0,.7)+b = 0 for all z. Since M is compact, Lemma implies
that b = 0. Therefore a = koyy, thus every element in H,,(M) is a multiple of o) and
H, (M)~ Z.

e Assuming (3), there are two possible generators in H,,(M). Choose one of them and call
it ops. Then ((0g,am)«<0n|x € M) is an orientation of M.

U

Definition 2.6.12
Let M be a compact, connected, orientable manifold. Given an orientation on M, the class oy;
as in Theorem |2.6.11| is also called fundamental class of M and is often denoted by [M] = oy;.

Example 2.6.13.
For the m-sphere, M = S™ we can choose p,, € H,,(S™) as in Definition as a generator.
Thus

[Sm] = Osm = .

In particular, spheres are orientable. It follows from Theorem [2.6.11| and Example [1.12.8| that
RP™ is orientable, iff n is odd.

Remarks 2.6.14.
All results about orientations can be transferred to a setting with coefficients in a commutative
ring R with unit 15.

1. Then M is called R-orientable if and only if there is a coherent choice of generators of
the group H,,,(M, M \ z; R) = R for all z € M.

2. Suppose M is a compact manifold. If M is not R-orientable, the map H,(M;R) —
H,(M,M \ {z}; R) = R is injective for all x € M with image {r € R|2r = 0}, cf.
Hatcher, Theorem 3.26 p. 236. In particular, for R = Z, M is not orientable, if and only
if H,(M;Z) = 0.

3. The results we obtained have formulations relative R: Lemmal2.6.9|goes through, and if M
has an R-orientation (of|z € M), then for all compact K C M there is an R-orientation
of M along K, i.e. a class ot € H,,(M, M \ K; R) that restricts to the local classes. The
R-version of Theorem yields for a compact manifold M a class of, € H,,(M; R)
restricting to the of. The class o} is then called the fundamental class of M with respect

to R and is denoted by [M; R].

Returning to integral coefficients, we know from Theorem [2.6.11|that for compact connected
orientable manifolds of the same dimension we get a copy of the integers in the homology of
the highest degree, with the fundamental class as a generator. This motivates the following
definition:

Definition 2.6.15
Let M and N be two oriented compact connected manifolds of the same dimension m > 1 and
let f: M — N be continuous. Then the degree of f is the integer deg(f) that is given by

Hy (f)[M] = deg(f)[N].
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Of course, this definition extends the notion of the degree of a map we introduced in Defi-
nition [1.10.1] for self-maps of spheres.

Proposition 2.6.16.
Let M, Ny, Ny be oriented compact connected manifolds and let f: M — N; and g: Ny — Ny
be continuous maps.

1. The degree is multiplicative,
deg(g o f) = deg(g)deg(f).

2. If M is the same manifold as M but with opposite orientation, then

deg(f) = deg(f: M — Ny) = —deg(f: M — Ny) = —deg(f: M — Ny).

3. If the degree of f is not trivial, then f is surjective.

Proof.
The first claim follows directly from the definition of the degree. For the second claim, note

that [M] = —[M], because we need to have

(0z,0)<[M] = —o0,
if (0.|r € M) is the given orientation of M.

For (3) assume that f is not surjective, thus there is a point y € N, that is not contained
in the image of M under f. Consider the composition

(M) 2L, ()

(Qy,N)*

H,,(N,N\vy).

This composition is trivial, since y ¢ im(f). On the other hand (g, n). is an isomorphism.
Hence H,,(f) = 0 and f has trivial degree. O

2.7 Cohomology with compact support

So far, orientation theory works fine if we restrict our attention to compact manifolds. We are
aiming at Poincaré duality: if M is a compact connected oriented manifold of dimension m,
then taking the cap product with the orientation class [M] = oy gives a map

(=) Noyr: HI(M) — Hyp_o(M).

Our aim is to show that this gives an isomorphism, but we also want to extend the result to
non-compact manifolds M. To this end we start with the following:

Definition 2.7.1
Let X be an arbitrary topological space and let R be a commutative ring with unit 1g.

1. Then the singular n-cochains with compact support singular cochains with compact support

are
SHX5R) = {¢: Sp(X) = R|FK, C X compact,p(c) =0
for all singular simplices o0: A™ — X with o(A") N K, = @.}
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2. The nth cohomology group with compact support of X with coefficients in R is

H!(X;R) = H"(S;(X;R)) .

Remarks 2.7.2.

1. The condition of compact support is formulated in a weak sense. One could have imagined
to restrict to cochains ¢ that are non-zero only on simplices contained in a given compact
subset K, depending on ¢. Then, however, a differential cannot be defined: if ¢ is a 0-
cochain on R assigning non-zero value only to the 0-simplex contained in x = 0, then its
differential assigns non-zero values to arbitrarily large 1-simplices, i.e. all those starting
or ending in x = 0.

2. Note that S¥(X; R) C S*(X; R) is a sub-complex. This inclusion of complexes induces a
map on cohomology
H!(X;R) — H"(X;R).

If X is compact, then obviously H(X; R) = H"(X; R) for all n.

A map from singular cohomology to singular cohomology with compact support is much
more subtle; indeed, we only get in Proposition a map from a collection of relative
singular cohomologies, involving all the compact subsets of a space.

Observation 2.7.3.
1. Let K C X be compact. The map of pairs

orkx: (X, X\X)=(X,9) — (X, X\ K)
induces a map of cochain complexes
ok x: S"(X, X\ K;R) — S"(X; R) .

We claim that the image of g y is contained in S7(X; R). Indeed, for an n-cochain
@ € S™(X; R) in the image, there exists ¢ € S"(X, X \ K; R) with ¢} y(¥) = ¢. The
functional ¢ is trivial on all simplices o: A™ — X with o(A") N K = @. Therefore, for
such a simplex o

2. For compact subsets K C L C X we have maps of pairs
(X, X\ X) ™ (X, X\ L) (X, X\ K)
such that ox 0 01 x = 0K x-

We summarize:

Lemma 2.7.4.
Let X be a topological space.

1. For any compact subset K C X, the map gj; y gives a cochain map S*(X, X \ K; R) —
S*(X; R). In particular we get an induced map

H*(oxx): H'(X, X\ K;R) — H(X;R).
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2.

For compact subsets K C L C X we have

9K,L © 0L,X = 0K, X
and therefore the diagram of cochain complexes:

S*(X, X\ K;R)

commutes.

Remarks 2.7.5.

1.
2.

Recall that a poset I is called directed, if for all 7,57 € [ thereis a k € I with 4,5 <k

The compact subsets of a space X form a directed system: if K C X and L C X are
compact, both are subsets of the compact subset K U L C X.

Given a poset I, we can consider diagrams (of modules, of abelian groups, of chain com-
plexes) of the shape I: for each i € I, there is an object M; and for all ¢ < j there is a
map fj;i: M; — Mj; with fij o fj; = fri for i < j < k and f;; = idyy, for all 4. If 1 is
directed, then we call the system (M;);c; a directed system.

. Lemma says that the system K — S*(X, X \ K;R) is a direct system of cochain

complezes: For K C L C L' we have

* * *
Ok, v — O ° Ok -

. We recall some facts about the direct limit of a direct system (M;);c;r of R-modules and

of (co)chain complexes of R-modules.

The direct limit lim M; of a direct system (M;) is an R-module ligMi, together with
a family of maps (h;: M; — %MZ)ZG ; with the following universal property: for every
family of R-module maps g;: M; — M that satisty g, o f;; = g¢; for all ¢ < j, there is a
unique morphism of R-modules g: thZ — M such that go h; = ¢g; for all i € I.

As a commuting diagram:
M; gi

X

fji h_n;lMZ —E”g—>M
A
Mj 9j

This universal property determines the R-module hgle up to unique isomorphism.

. For a direct system (M;,i € I) of R-modules we can construct the direct limit thZ as

lim M; = (@Mz> /U

i€l
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where U is the submodule of @, ; M; generated by all differences of the form m; —
fii(m;),i < j. The map g; : M; — thl is the composition of the injection for the
direct sum, followed by the canonical projection to the quotient.

7. We need an explicit construction of the direct limit of a direct system ((C;).)ier of
(co)chain complexes: we write L := hﬂ(C’Z) In degree n, we set

Ly = ling(C)n)

All diagrams constructed from the boundary operators

This gives a boundary map

d: L, = (@(CZ))WL — (@(Ci))n—l =Ly .

More generally, any morphism of a directed system induces a morphism between the
direct limits.

8. Let (A;)ier, (Bi)ier and (C;);er be three direct systems of R-modules. If
is a short exact sequence for all i € I and if [ o ¢; = ¢; 0 f1i, [ 0 1hy = 1pj o fF for all

7t 3o 7t
1 < 7, then we call

0 (A4) 4 By Y () = 0

a short exact sequence of direct systems.

The composition of the map ¢;: A; — B; with h;: B; — ligBi gives maps A; — thZ
These maps yield, by the universal property of liglAi, a unique map

o: liﬂAi — li_n>qBi :
Similarly, we get a map 1 : thi — hglC’,
Lemma 2.7.6.
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1. If
0 (A4) 4 (B Y (c) — 0

is a short exact sequence of directed systems of R-modules, then the sequence of R-
modules
0 — lim A; —% lig B; —% limg C; — 0

is short exact.

2. If (A;)er is a directed system of chain complexes, then

lim H,,,(A) = H,, (lim 4).

Proof.
One has to show that i) ¢ is injective, ii) the kernel of 1) is the image of ¢ and iii) ¢ is surjective.
We show 1) and leave ii) and iii) and the second assertion as an exercise.

Let a € lim A; with ¢(a) = 0 € lim B;. Write a = 251 Ajaj] with a; € A;;. Choose
k >y, ..., 0, then a = [ag] for some a; € Ai. By assumption ¢(a) = [¢r(ax)] = 0. Thus there
is an N > k with fZ ér(ax) = 0 and by the fact that the families ¢ are maps of directed
systems, we have 0 = f5, o ¢r(ax) = ¢n o fi,(ax). But ¢y is a monomorphism and therefore
fie(ar) =0¢€ lim A;, hence a = lar] = [fi,(ax)] = 0. O

We can use this algebraic result to approximate singular cohomology with compact support
via relative singular cohomology groups.

Proposition 2.7.7.
For all spaces X we have isomorphisms

(=23

lim $*(X, X \ K; R) —> S:(X; R)

and hence N
th*(X,X\K;R) — HX(X;R).

Here the directed system runs over the poset of compact subsets K C X.
Proof.
By the universal property of hgrl S*(X, X \ K; R), the chain maps
Ok x ST(X, X\ K R) — S{(X; R)
from Lemma combine into a single chain map
@S*(X,X\K;R) — S¥(X; R)

A cochain ¢ € S"(X;R) is an element of S’(X;R), if and only if there is a compact
K = K, such that ¢(0) = 0 for all o with ¢(A”) N K = @ and this is the case if and only if
v € S"(X,X \ K; R). This shows that the map is surjective. Injectivity is direct. Then apply
Lemma [2.7.612. O

To the eyes of compact cohomology, R™ looks like a sphere:
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Proposition 2.7.8.

R, x=m,

H:(R™ R) = H*(R™,R™\ {0}; R) = {0 * #m,

Proof.

If K C R™ is compact, then there is a closed ball B, (0) of radius rx around the origin, with
K C B, (0). Without loss of generality we can assume that rx is a natural number. Thus we
can take the direct limit over the subsystem of such balls:

@H*(RW,R’” \ K;R) = liﬂH*(Rm,Rm \ B.(0); R)
where the direct system on the right runs over all natural numbers » € N. But
H*(R™, R™\ B,(0); R) = H*(R™, K™\ {0}; R)
for all » and the diagrams

H(R™,R"\ B, (0); R) — H*(R",R" \ B, 1(0); R)

| |

H*(R™,R™\ {0}; R) —%— H*(R™,R™ \ {0}; R)

commute. Therefore
lim /% (R™, R™ \ B,(0); R) = lim H*(R™, R™ \ {0}; R)
is an isomorphism, but the system on the right is constant and therefore
H (R B) = lim H* (R™, R™\ B,(0); R) = H*(R", R" \ {0}; ).
OJ

Note that R™ is homotopy equivalent to a one-point space which is compact and for which
compactly supported cohomology and ordinary cohomology coincide, cf. Remark [2.7.3]2. Thus
cohomology with compact support is not homotopy invariant; it cannot be characterized by
axioms of Eilenberg-Steenrod type.

2.8 Poincaré duality

Observation 2.8.1.
Let R be a commutative unital ring.

e Let M be a connected m-dimensional manifold with an R-orientation (o.|x € M). For
a compact subset L C M, following Proposition [2.6.10, let o, € H,,(M, M \ L) be the
orientation of M along L. For an inclusion K C L of compact subsets, we have that

(0r,n)«(0r) = oK
because (Qz,K)*(OK) = O0p = (QJJ,L)*(OL) - (Qcc,K)* o (QK,L)*(OL) fOl" aﬂ HANS K anda by

Lemma [2.6.912, the class ox is uniquely characterized by this property.
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e Consider for any compact subset K C M the cap-product

(=)Nox: H"P(M,M\ K;R) — H,(M;R)
a —  aNog = F(ox)® (a,R(ok)) .

For an inclusion K C L of compact subsets, we have for « € H™P(M, M \ K; R) that
(o) (o) € H™P(M,M \ L; R) and

(ox.r) () Nor, =anN (ok.L)(or) =aNokx € Hy(M; R) .

because by Proposition [2.4.412 the cap product is natural.

By the universal property, the maps produced by the cap products combine into a map

ling (— Mog): lim H™ (M, M\ K; R) *E* H"™"(M; R) — H,(M; R).

Definition 2.8.2
Let M be a connected m-manifold with R-orientation (o,|x € M). The map

@(— Nog): H' P(M; R) — H,(M;R)

is called Poincaré duality map and is denoted by PD or PD,,.

We can now state the main result of this section:

Theorem 2.8.3 (Poincaré Duality).
Let M be a connected m-manifold with R-orientation (o.|z € M). Then the Poincaré duality
map

PD: H" P(M;R) — H,(M; R)
is an isomorphism for all p € Z.

Corollary 2.8.4 (Poincaré duality for compact manifolds).
Let M be a connected compact manifold of dimension m with an R-orientation (o,|x € M)
and let [M] = ojs be the fundamental class of M, then

PD = (=) N [M]: H" ?(M;R) —s H,(M:R)

is an isomorphism for all p € Z. In particular, we have for a compact connected R-oriented
m-manifold H™(M, R) = Hy(M; R) = R.

Example 2.8.5.
Any connected compact manifold of dimension m possesses a Z/2Z-orientation and thus a
fundamental class 0%4/22; € H,,(M;Z/2Z) = Z/27 and thus for all p

(=) N o2*%. H™P(M; Z/27) = H,(M;Z/27.).

For instance the cohomology of RP™ and its homology satisfy Poincaré duality with Z/27Z-
coefficients, regardless of the parity of n.

Proof. of Theorem [2.8.3
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1. First we consider the case of M = R™. We know from Proposition that

R, p=0,
0, p#0
and this is isomorphic to H,(R™; R). Therefore, abstractly, both graded R-modules are

isomorphic. Let B, be the closed r-ball centered at the origin. We have to understand the
map

H (R = {

(—)Nop,.: H'(R™) — Hy(R™; R).

We know from Example(2.4.7/2 that (1, aNop,) = (a, 0p,) for all « € H™(R™,R™\ B,; R).
But
(—,0p.): H"(R™,R™\ B,;R) — R, uw (u,0p,)

is bijective because of the universal coefficient theorem
H™(R™ R™\ B,; R) 2 Hom(H,,(R™,R™\ B,), R) ® Ext(H,,_1(R™,R™\ B,), R)

The last summand is trivial because H,,_;(R™ ,R™\ B,) = 0. Thus we obtain that for all
r the map (—) Nop, is the map

Homyz(Z{op,), R) = R with ¢+ p(0g,)
and thus bijective and therefore its direct limit
h_n}(—) Nog,: ligl-]m(Rm,R”Z \ B,; R) — Hy(R™; R)
is an isomorphism as well.

2. Now assume that M = UUV such that the claim holds for the open subsets U, V and UNV
which are m-dimensional manifolds themselves, i.e. the maps PD;;, PDy and PDyny are
isomorphisms and each of them uses the orientation that is induced from the orientation
of M. Assume that K C U and L C V are compact and consider the relative version of
the Mayer-Vietoris sequences in cohomology

.. ——=HP(M, M\ (K N L); R)

HP(M,M\ K;R) ® HP(M, M\ L; R) — HP(M, M \ (K UL); R) >

<—>Hp'”'1(]\4,]\4\(KDL);R)—>-...

Excision for M\ U C M \ K tells us

HY(M, M\ K;R) = H’(U,U\ K;R) .
Similarly, we find for M\ V C M\ Land M\ (UNV)C M\ (KNL)

HY(M, M\ (KNL);R) = H(UNV),[UNV)\ (KNL);R)
HP(M,M\ L;R) = H*(V,V \ L; R).
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We obtain a map of exact sequences

H™P(UNV;R) Hovny H,(UNV;R)

Noy &Noy

HP?(U; R)® HP(V; R) H,(U; R) ® Hy(V; R)

Nons

H~7(M; R) H,(M; R)

H™ " (UNV;R) fovny H, \(UNV;R)

Noy GNoy

H P Y(U; R) @ H PV R)

prl(U; R) S5, prl(v; R)

The right column is exact by the Mayer-Vietoris sequence [1.8.1] in homology; the exact-
ness of the left column follows from the Mayer-Vietoris sequence in cohomology we just
considered and the isomorphisms obtained by excision by taking the limit. By assump-
tion, the top two and the two bottom horizontal arrows are isomorphisms. The five lemma
thus proves the case M = U U V.

3. Now assume M = U?; U; with open subsets U; that exhaust M, i.e. such that U; C
Uy C .... We will show that if the claim holds for all open subsets U; with the orientation
induced by the one of M, then the claim holds for M.

To that end, let U C M be an arbitrary open subset and let X C U be compact. Excision
for (M \U) C (M \ K) C M gives us an isomorphism

HP(M,M\ K;R) =~ H?(U, U\ K;R)

and we denote by ¢x the inverse of this map. The direct limit of these ¢ over all K C U
for fixed U induces a map

py = limpg: HY(U: R) — HY(M; R).

In general, this map is not an isomorphism (U is ‘too small to see enough of M’), but
now we vary the open set U. For U C V C W we get

vu =9y opp,  wp =id.
As the excision isomorphism is induced by the inclusion (U, U \ K) < (M, M \ K), we
get that the following diagram commutes:

H?(U; R) —%~ H™?(M; R)

lPDU lPDM
(l-]w)*
H,(U; R) —~= H,(M; R)

and hence the corresponding diagram

lim H7" (U RIZ e ot )

lPDM

LlEPDUi
lim (iM).
lig H,(U;; R) =~ H,(M; R)
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commutes as well. The map li go{‘]{_ is an isomorphism because every compact subset K C
M ends up in some open set U; eventually. By assumption, each PDy, is an isomorphism
and so is their limit. Similarly the limit of the (@% )« is an isomorphism and therefore
PDj, is an isomorphism.

4. We show that the claim is Valiod for arbitrary open subsets M C R™. We express M as
a countable union M = U:il B,., where the B, are m-balls. This is possible because the
topology of R™ has a countable basis.

Each open ball B, in R™ is homeomorphic to R™, thus by (1) the claim holds for these
balls B,.

Set U; := Uizl ér, then of course
UcU,C...

The claim then holds by (2) for the U; as finite unions, and because of (3) it then holds
for M.

5. Finally, we assume that M is as in the theorem: a connected m-manifold with some fixed
R-orientation. Every point in M has a neighborhood which is homeomorphic to some
open subset of R™ and we can choose the homeomorphism in such a way that it preserves
the orientation. We know that M has a countable basis for its topology and thus there
are open subsets V1, V5, ... C M such that V; = W; C R™ and the V; cover M. Define
U, = U;:1 V;, thus M = |J, U;. The claim holds for the V; by (4) and therefore it holds
for the finite unions U; by (2) and thus by (3) for M.

g

2.9 Alexander-Lefschetz duality

We will derive a relative version of Poincaré duality H™ ¢(M; R) = H,(M; R) and some geo-
metric applications. First, we consider Cech cohomology.

Observation 2.9.1.

Let X be an arbitrary topological space and let A C B C X a pair in X. We want to associate to
the pair a cohomology group. The rough idea of Cech cohomology is to approximate H 1B, A)
by H?(V,U) where the open neighborhoods come closer and closer to (B, A).

e We consider open neighborhoods (V,U) of (B, A), i.e. open subsets U C V C X with
AcUand BCV.

e From the inclusion (V,U) C (V',U’) we get induced maps in relative cohomology

HIY(V',U") — HY(V,U).

e We use this property to construct for a fixed pair A C B in X a directed system, so we
set (V,U") < (V,U)if and only if V C V' and U C U".

Definition 2.9.2
Cech cohomology of the pair (B, A) with A C B C X is defined as the limit

HP(B, A) = lim H*(V,U) .
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In this generality, Cech cohomology has very bad properties.

Remarks 2.9.3.
1. A space Y is called a euclidean neighborhood retract, if Y is homeomorphic to a subset
X C R™ for some n such that X is a retract of a neighborhood X C U C R".

2. If the space X is a euclidean neighborhood retract and A C B C X are locally compact,
then H?(B, A) only depends on B and A and not on X.

3. If in addition A and B are euclidean neighborhood retracts themselves, then HP(B, A) is
actually isomorphic to HP(B, A). For more background on Cech cohomology see Dold’s

book Lectures on Algebraic Topology, reprint in: Classics in Mathematics. Springer-Verlag,
Berlin, 1995, VIII §6.

Observation 2.9.4.
e Now let M be a connected m-dimensional manifold and let K C L C M be compact
subsets in M. We assume that there is an orientation class oy, € H,, (M, M\ L) of M along
L (possibly with coefficients in R, but we suppress coefficients from the notation). We
aim at a cap-pairing of Cech-cohomology H*(L, K) with relative homology H., (M, M\ L)
in which the class oy, is.

e For (L,K) C (V,U) we set up a map on the level of chains and cochains
Se(U) + Se(V\ K)
Sk(V\ L)

For this note the trivial inclusion V. \ L C (UU (V' \ K)) = V. For a € S?(V,U) and

Sp(U) 48 (V\K)
a-+be 2ok ) Sk(VIiL)

VU@ ( ) S VANE VL) (%)

we have

anN(a+b)=aNa+anb=0+anb
and this ends up in the correct chain group.

e The homology of W is isomorphic to H,(V,V'\ L) and this in turn is isomorphic

to H.(M, M \ L) via excision for (M \ V') C (M \ L) C M. This allows us to rewrite the
second tensorand on the left hand side of (x), as desired.

e Excision for (M \ V) C (M \ L) C (M \ K) tells us as well that
HAV\ K, V\ L R) = H.(M\ K, M\ L;R) .
This allows us to rewrite the right hand side.

e As Cech cohomology is the direct limit ligH *(V,U) and as everything is compatible
(which we did not really show), the above gives a well-defined map

PD: HY(L,K) ® Hp(M, M\ L) — Hp_o( M\ K, M\ L), a®oL— aNoy.

Proposition 2.9.5 (Alexander-Lefschetz duality).
Let M be a connected m-dimensional manifold and let K C L C M with K, L compact. Let
M be oriented along L with respect to R. Then the map

PD = (-)Noy: HY(L,K;R) — H,, (M \ K, M\ L; R)

is an isomorphism for all integers q.
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Before we prove this result, we collect some properties of this form of the Poincaré duality
map.

Remarks 2.9.6.
1. This PD map still satisfies that PD(1) = oy, for K = @ and 1 € H°(L; R).

2. The PD-map is natural in the following sense: for any map of pairs i : (L, K) < (L', K’)
in M, we have also amap i: (M \ K/, M\ L") — (M \ K, M \ L), and the diagram

o, k) — 2" g (MK M\ L)
me me_q@)
AL, K)— 2 g (M\ K, M\ L)

commutes.

3. We will not prove the following fact (cf. Bredon Lemma VI.8.1). The diagram

oo —————— HI(L, K) HI(L) HI(K)

lﬂoL lﬁoL Lr‘]oK lﬁoL

HAYL K) ———— ...

oo ——> Hp g(M\ K,M\ L) — Hp,_o(M,M\ L) —> Hy, (M, M\ K) —> Hyp_q 1(M\ K,M\ L) —> ...

commutes, and therefore (using the five lemma) it suffices to show the absolute version
of Alexander-Lefschetz duality,

HY(L) ™% H,,_ (M, M\ L) .

Lemma 2.9.7.
Let K and L are compact subsets of M with an orientation class ox;, along K UL and induced
orientation classes ox and oy. Then the diagram

..%-HQ(KUL) HIY(K)DHI(L) Hq(KﬂL)L‘...

LﬂoKuL lﬁoKEBﬂoL LOKQL
e —6> Hm,q(M,M\(KUL)) —_— Hm,q(M,M\K)eaHm,q(M,M\L) —_— Hm,q(M,M\(KﬂL)) L e

commutes and has exact rows.

Proof.
e The only critical squares are the ones that are slightly out of the focus of the above

diagram, the ones with the connecting homomorphisms. The H*-sequence in the upper
line comes from taking the direct limit of

0 — Hom(S,(U) + S.(V), R) — Hom(S,(U), R) & Hom(S,(V), R) — Hom(S,(UNV),R) = 0

over all open subsets U,V with K C U and L C V. (Note that by Lemma taking
the direct limit is exact.)

o Let o € HY(KNL; R). Choose a representing cocycle f with o = [f], i.e. §f =0on UNV
and let 0 be the connecting homomorphism for ordinary singular cohomology. What is
Od(a)? A preimage for f in the direct sum is a pair (f,0) and its coboundary is (4 f,0),
so if we define h € Hom(S,U + S.V, R) by the property h(u + v) = ¢ f(u) for u € S, (U),
v € S.(V), then

d(a) = [h].
We can extend h to a cochain on M (for instance by defining it to be trivial on the chains
that are supported on the complement).
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e We want to compare d(a) N oxyr and d(a N ognr). For the first term we express the
orientation class ox;, = [a] as a sum

a=b+c+d+eeS,(UNV)+ S, (U\L)+ S.(V\K)+ S.(M\ (KUDL)).

This is possible, since the subsets U NV, U \ L,V \ K and M \ (K U L) are open and
therefore we can work with small chains for this open cover. With the notation as above
we get

d(a)Nogur =hN(b+c+d+e)=hNd .

As h is only non-trivial on chains in U, only the terms involving b and ¢ can contribute.
Since §(f) is trivial on U NV, h is only non-trivial on the complement of V in U.

e For oM ogny we write [f Na] and as the lower exact row comes from the short exact
sequence of complexes
Sy (M) Sy(M) S« (M) S (M)
SM\KUL)  S.(M\K) S.(M\L)  S.(M\K)+S.(M\L)
we view fNa as an element modulo S, (M \ K)+S,(M\L). The connecting homomorphism

picks (f Na,0) as a pre-image of f N a, then takes its boundary (O(f N a),0). But the
latter is up to sign by the Leibniz rule

(O(f Na),0) = (6(f)Na),0) £ (fNda,o).

Writing a as a = b+ ¢+ d + e as above and using that f ignores b and e we obtain that
the above is (0f Nc+dfNd=+ fNda,0). But 6 fNd and fNOa are elements in S, (M \ K)
and hence all that remains when we pick a preimage is (0f N¢,0), thus

—0

0—

daNognr) =[0fNel =[hNd.

Now we can prove Alexander-Lefschetz duality.
Proof. of Proposition [2.9.5
Remark [2.9.6/3 implies that it suffices to prove the absolute case, i.e. to show that for any
compact subset K C M

(=) Nog: H(K) — Hp_o(M, M\ K)

is an isomorphism for all g.

1. If K is empty, then we get the true statement that H9() = 0 = H,,_,(M, M). For K a

point we only get something non-trivial for degree ¢ = 0 and here 1 € R = H°(K) is sent

to ox = o, via Poincaré duality. Similarly, if M = R™ and K is convex and compact we
can proceed as in the case of a point.

2. If K = K1U...UK, with K; compact and convex and M is still R™ an induction over r
using Lemma and (1) proves the claim.

3. For M = R™ and K arbitrary we can find a neighborhood U of K of the form U = Uf\il U;
with the U; being convex. Such U suffice to calculate the direct limit lim / 2(U) for the

Cech cohomology of K. For such U we have
Hypy(R™ R™\ ) 2 limg H,,_,(R™, R"\ U)
because R™ \ K = |J,;R™ \ U. The U satisfy Alexander-Lefschetz duality by (2) and

hence K does.
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4. Finally let M and K be arbitrary, but satisfying the conditions of Proposition [2.9.5]
Express K = K U...UK, such that the K; are contained in a chart that is homeomorphic
to R™ and proceed as in the case before.

0
2.10 Application of duality
We specialize to the case when the manifold M is R™ with the standard orientation.
Proposition 2.10.1 (Classical Alexander duality).
Let K C R™ be compact. Then
HYK) = H,_(R™R™\ K) = H,,_, 1(R™\ K).
Proof.
Here the first isomorphism is the absolute version of Alexander-Lefschetz duality for
M = R™. The second one is a result of the long exact sequence of pairs in homology. U

Remark 2.10.2.
e This is bad news for knot complements. A knot K is the homeomorphic image of S! in

R3. Proposition [2.10.1| implies that
H,(R*\ K) = H'(K)

but the circle is a euclidean neighborhood retract and therefore Cech cohomology concides
with ordinary singular cohomology. Since H'(K) = Z, the first homology group of any
knot complement is isomorphic to the integers, thus it does not help to distinguish knots.

e The fundamental group of the knot complement does a better job. Here the un-knot gives
the integers, but for instance the complement of the trefoil knot
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has a fundamental group that is not isomorphic to the integers, but is isomorphic to the
group (a, bla* = b3). This group is actually isomorphic to the braid group on three strands.
(This can be computed using the Wirtinger presentation derived from the link diagram of
a knot, see Section 4.2.3 and 4.2.4 of J. Stillwell. Classical Topology and Combinatorial
Group Theory. Springer Graduate Text in Mathematics 72, 1993.

Proposition 2.10.3.

Let M be a compact oriented connected m-manifold and let @ # K C M be compact. If the
first homology Hy(M) of the ambient manifold is trivial, then ™ '(K) is a free abelian group.
The complement M \ K then has rank ™ '(K) 4 1 connected components.

Proof.
Let k = |mo(M \ K)| be the number of components of the complement of K in M. By Corollary

[L.3.3] i
k =rankHy(M \ K) =1+ rankHy(M \ K).

By assumption Hy(M) = 0 = Hy(M) and therefore we know from the long exact sequence and
duality that 3 §
Hy(M\ K) = H (M, M\ K) = B (K).

Since the group H m=1(K) is isomorphic to a zeroth homology group, it is free abelian. The
statement about k is now the combination of the two equations. U

Proposition 2.10.4.

If M is a compact connected orientable m-manifold and if the first homology group of M
with integral coefficients vanishes, then all compact submanifolds of M without boundary of
dimension (m — 1) are orientable.

Compact manifolds without boundary are often called closed.

Proof.
A submanifold N C M is a euclidean neighborhood retract and therefore

H™(N) 2 H™1(N) 2 Hy(M, M\ N) = By(M\ N) .

Thus H™!(N) is free abelian. Theorem [2.6.11|implies that the components of N are orientable.
U

Corollary 2.10.5.
It is not possible to embed real projective space RP? into R3.

Proof.

If one could, then one could embed RP? into S? as the one-point compactification of R3. Due
to H,(S?) = 0, the 2-manifold RP? would be orientable, but we know from Example [2.6.13
that this is not true. O

At Oberwolfach Research Institute for Mathematics there is a model of the Boy surface.
This is a model of an immersion of RP? into three-space. http://www.mfo.de/general/boy/
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Proposition 2.10.6.
Let M be a compact connected and orientable m-manifold and let

B = dimgH;(M; Q)

be the ith Betti number of M. Then 3; = 5,._;.

Proof.
Note that in this case Cech cohomology H*(M) = H*(M, () is isomorphic to H*(M) because
a limit is to be taken over the relative cohomology groups H*(M,U) for the directed system of
pairs (M, U) with U any open set which has (M, () as a maximal element. Duality then
implies that

Brni = dimgHop_s(M; Q) 2% dimg H* (M; Q)

As the group Q is divisible, Remark [2.2.2\7 implies that there is no Ext-term arising in the
universal coefficient theorem 2.2.4] and thus

dimgH'(M; Q) = dimg(Hom(H;(M),Q)) .

The right hand side is equal to the dimension of the vector space of the homomorphisms from
the free part of the homology group H;(M) to Q which is equal to the rank of H;(M). Since
tensoring with @Q is exact, there is no Tor-term and thus H;(M;Q) = H;(M) ®z Q; thus the
rank of H;(M) is equal to 3; = dimgH;(M; Q). O

Corollary 2.10.7.
Let M be a compact connected and orientable m-manifold of odd dimension. Then the Euler
characteristic x(M) = 7" ,(—1)"5; vanishes.

Proof.
We compute
X(M) =D (=18, 5= (=1) B = (—=1)"x(M)
i=0 =0

Proposition 2.10.8.
For M a compact connected orientable m-manifold with boundary the duality holds

HIY(M,0M) = H,, (M) .
Proof.
Glue a collar to M, i.e., consider the auxiliary manifold
W :=MU(OM x[0,1)) == MUW".

Then W is an m-manifold without boundary; thus duality applies to the pair of compact
subsets OM C M: )
HIY(M,0M) = Hy (W \OM, W\ M) .
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Now note that
WN\OM ~M\OMUW'\OM and W\ M =W'\ oM
so that the right hand side becomes
Hy (M \OM)=H,,_,M) .

For the last isomorphism, we used that taking the complement of the boundary OM in M
gives a space that is homotopy equivalent to M. Il

Corollary 2.10.9.
If M is a compact connected orientable m-manifold, then the Euler characteristic of the bound-
ary OM is always even.

Proof.
With W as above, the homotopy equivalence W ~ M implies x(M) = x(W). The long exact
sequence of the pair W\ M C W gives

X(W) = x(WA\ M)+ x(W,WA\ M) .

The homotopy equivalence W\ M ~ M yields x(W\M) = x(0M) and duality guarantees
that x(W, W\ M) = (—=1)"x(M). Therefore

X(OM) = (1+ (=1)"")x(M)

and this is always an even number. U

Remark 2.10.10.
1. Recall from from Example|1.12.8/that the real projective space has the structure of a CW

complex with one cell in each dimension. Thus RP?™ has Euler characteristic 1 and by
Corollary [2.10.9| cannot be a boundary.

2. For the calculations of of the Euler characteristic of complex and quaternionic projective
spaces, recall from Example [1.12.8that for complex projective space of dimension 2m we
have cells in dimension up to 4m, but only in even dimensions. Similarly, for quaternion

projective space of dimension 2m cells occur up to dimension 8m, but only in degrees
divisible by 4.

Thus )
X(CP™) = (=1)* =2m + 1
=0
and
2m
XEP™) =Y (=) =2m+1 .
=0

By Corollary [2.10.9, all these projective spaces do not occur as boundaries of connected
compact orientable manifolds.

3. These facts are important in bordism theory: one can introduce an equivalence relation on
manifolds by saying that two m-manifolds M and N are bordant, if there is an (m + 1)-
manifold W whose boundary is the disjoint union of M and N, OW = M L N. Thus the
projective spaces give non-trivial equivalence classes under the bordism relation.
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2.11 Duality and cup products

Let M be a connected closed m-manifold with an R-orientation o%; for some commutative ring
R. We consider the composition

H*(M; R) ®p H™*(M; R) —— H™(M; R)

l(—)ﬂoﬁ

Definition 2.11.1
Let M be a connected closed m-manifold with an R-orientation for some commutative ring R.
For o € H*(M; R), 8 € H™ *(M; R) the map

(, B) = {a U B, 03y)

with values in R is called the cup product pairing of M.

Proposition 2.11.2.
If R is a field or if R = Z and all homology groups of M are torsion-free, the cup product
pairing is non-singular in the sense that the two induced maps

H*(M;R) — Homgr(H™*(M;R),R) and H™ *(M;R)
o (5»—><aUﬁ,0ﬁ>€R) 15

Homp(H*(M; R), R)

%
— (a— (aUB,0f) €R)

are both isomorphisms.

Proposition [2.11.2] holds as long as one restricts attention to the free part of the cohomology
groups: let FH*(M; R) denote the free part of H*(M; R) then there is a non-singular pairing

FH*(M;R) ®r FH™ *(M;R) — R.

In geometric applications the ground ring is often R = R.
Proof.
The Kronecker pairing, cf. Lemma yields a map

k: H*(M; R) — Homp(H,(M;R),R)

and Poincaré duality tells us that capping with o, is an isomorphism between Hj,(M; R)
and H™ *(M; R). The composite is

H*(M;R) % Homg(Hy(M;R),R) = Homg(H™ *(M; R), R),
a = {a,(=)Nok) .

Over a field, k and hence the composite is an isomorphism. We finally use the duality relation
(@ U 8,0f) B2 (1, (au B) nofiy) B (1,0 (80 0f)) B (o B o)

In the torsion-free setting, we obtain an isomorphism as well. O

Definition 2.11.3
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Let M be a connected closed m-manifold with an R-orientation for some commutative ring R.
Dual to the cup product pairing, we define the intersection form:

H,(M:R)® Hy_,(M;R) = R
with a @ b+ (PD™'(a) UPD™!(b), 0%,).

For even-dimensional manifolds, the signature of this form is a particularly important in-
variant in differential topology. For instance one can show that for a compact oriented manifold
W such that OW = M with a 4n-dimensional manifold M, the signature of the intersection
form on M is trivial.

For explicit computations of cohomology rings, the following Lemma is useful:

Lemma 2.11.4.

Let M be a connected closed m-manifold with a Z-orientation and with torsion-free homology
groups. If HP(M) = Z = H™ P(M) and if « € H?(M), f € H™ P(M) are generators, then
a U f is a generator of the group H™ (M) = Z.

Proof.

Since by Proposition [2.11.2]the cup product pairing is non-degenerate for torsion free cohomol-
ogy, there exists for any generator a« € HP(M) an element 8 € H™P(M) with

(aUpf om)=1.

Note that this implies that U ' is a generator of H™ (M), as a dual of the generator oy;.
As [ is a generator of H™ P(M), we know that ' = kf for some integer k and hence

1= <CYU5/70M> = <&Uk670M> = k<aU570M>'

But («Uf, 0p) is an integer as well, so k has to be £1 and therefore U 3 generates the group
H™(M) as well. O

We will use this result to calculate the cohomology rings of projective spaces.

Lemma 2.11.5.
If « € H?*(CP™) is an additive generator, then a? = o“? € H?*(CP™) is an additive generator
as well for all ¢ < m.

Proof.
We have to show by induction on the complex dimension m that a? is an additive generator of
H?*(CP™).

e For m = 1 there is nothing to prove because CP* = S? and there o = 0.

e Consider the inclusion i: CP™! — CP™. The CW structure of CP™ explained in Ex-
ample [2.12.9| implies CP™ = CP™ ! U; D*™ for attaching the 2m-cell. For m > 1

i*: H*(CP™) — H*(CP™ ")

is an isomorphism for 1 < 4 < m—1. In particular, i*(«) additively generates H?(CP™!).
Induction over m then shows that (i*(a))? generates H?¢(CP™ ') for all 1 < ¢ <m — 1.
But (i*(«))? = i*(a?), by Proposition 2.5.9]4, and ¢* is an isomorphism, so af additively
generates H?(CP™) for 1 <qg<m — 1. Lemma then shows that o Ua™ 1 = o™
generates H*™(CP™).
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Corollary 2.11.6.
As a graded ring, we have

H*(CP™) = Z]a]/a™*" with |a| = 2.

Similarly,
H*(RP™,Z/27) = 7./]27Z[a] /o™t with |a| = 1.

(Taking coefficients in Z/27Z leads to a complex with vanishing differentials, cf. Example(1.13.3])

There are two geometric consequences that follow from this calculation.

Proposition 2.11.7.
For 0 < m < n the inclusion j: CP™ — CP" is not a weak retract.

Proof.
Let us assume that there exists r: CP" — CP™ with r o j ~ id. On the second cohomology
groups, the map j induces an isomorphism

§*: H*(CP") — H*(CP™) .

Let a € H*(CP™) be an additive generator. Because of j* o r* = id, the element 3 := r*(a) €
H?*(CP") is an additive generator as well. As o™ = (0 we get

F7H = (@)™ = (@™H) = 1°(0) = 0,

But by Corollary 2.11.6| H*(CP") = Z[B]/8"! and hence g™+ # 0. O

Proposition 2.11.8.
The attaching map of the 2n-cell in CP" is not null-homotopic.

Proof.
Let ¢: S?»~! — CP"! be the attaching map, thus
CP" = CP™' U, D,

If ¢ were null-homotopic, then there is a homotopy H : §*"~! x [0,1] — CP"! with H; = ¢
and H, constant. Since Hj is constant, H factorizes to a map H

§*71 x [0,1] =—CP"!

-~
~
/,..
l -7 H

D2n g
with the vertical map being (x,t) +— tz. Then

HUidepn-1 : D*UCPY ! —» CP™ !
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factorizes to a retract r : CP" — CP" !,

D2 1y C Pt i cprt

—- 7
—
—
—
—
—
— r

CP" =D U, CP!

in contradiction to Proposition [2.11.7] U

Remark 2.11.9.
A famous example of this phenomenon is the Hopf fibration

h:S* - CP'=§*=CUoo.

Consider S* C C? and send S* 3 (u,v) to

h(u,v) := {%’ v70,

oo, v=0.

Up to a homeomorphism of S?, this is the attaching map for the 4-dimensional cell of CP?
and thus by Proposition [2.11.8 not null-homotopic. In fact, the map h generates the homotopy
group m3(S?) 2 Z.

2.12 The Milnor sequence

The aim is to calculate the cohomology rings of infinite dimensional projective spaces and more
generally to understand cohomology groups for infinite dimensional CW complexes.

We start with some algebraic structures: let (M;);en, be a family of R-modules together
with a sequence of maps

My &% My L M, £

We call such a family (M;, f;)ien, an inverse system (over the poset (N, <)).

Definition 2.12.1
The inverse limit of the inverse system (M;);cn, is the R-module

I&HMZ = {(l’o,l’l, .. ) € H Mi‘fiJrl(xH»l) = $i,i 2 O}

i€Np

Remarks 2.12.2.
1. The restrictions of the projections of the product endow the the inverse limit with a

system of maps such that the diagrams

Pji+1

him M; —— Mj,

N Lff“

M.

J
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commute for all 7 € Ny. With their use, we can characterize the inverse limit by the
following universal property:

hj+1 M;

j+1
V

W= =% ILH M; fi+1

SN

J

2. If £ denotes the map that sends the element (29,71, ...) € [[;en, Mi to (w0 — fi(z1), 21 —
fa(xs),...) then we can express the inverse limit as the kernel of &,

0 — lim M; — [ M = [ M.

1€Ng i€Ng

Definition 2.12.3
Let lim 'M; be the R-module coker(§).

By definition, we have an exact sequence
0— limM; — [ M = ] Mi — lim'M; =0 .
1€Np 1€Ng

Lemma 2.12.4.
If
0— (M, fi) — (Ni, 9;) — (Qi, hi) = 0

is a short exact sequence of inverse systems (cf. Remark 8 for exact sequences of direct
systems), then the sequence

0 — lim M; — Lim N; — lim Q; —>1'£11Mi —>1'£11Ni —>1£le1- —0

18 exact.

Proof.

Consider the map &: [[, M; — [[, M; as a chain complex C, that is non-trivial only in two
degrees 0 and 1. Then the first homology group is the inverse limit and the zeroth homology
group is the lim-one term

H,C, =ker{ = l&an and HyC, = coker{ = Y&llMi .

We can translate the short exact sequence of inverse systems into a short exact sequence of
chain complexes

0 — I, Ms — 1, Ni— 1, @i —0

ok
0—[; Mi — L Ni —]]; Qi —0
and the associated long exact sequence (cf. Proposition [1.5.6]) gives precisely our claim. U

Therefore the lim-one terms measure how non-exact inverse limits are. We present a criterion
which ensures that we have exactness.
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Lemma 2.12.5 (Mittag-Leffler condition).

Let (M;, f;) be an inverse system. Assume that for every n > 0 there exists N = N(n) such
that for all m > N that the image of f,4 1 0...0 f,: M,, — M, is equal to the image of
fni10...0 fn: My — M,. Then

lim ' M; = 0.

Proof.

Without loss of generality, we can assume that the sequence N(n) is monotonously increasing
in n. We have to show that the cokernel of £ is trivial. This means that we have to show that
any sequence (a;); € [[; M; is in the image of £, if the Mittag-LefHler condition holds.

e As a first case, we deal with sequences (a;); such that every a; is in the image of f;41 o
...0 fN(i) : MN(z’) — Mi.

By induction on k, we construct elements by, . .., by with
bi € im(fiz10...0 fnu) C M,

such that a; = b; — fi11b;1 for all i < k. Then we have (a;) = £(b;).
We start with ag = by € Mj. The condition is empty for k = 0.

Assume that elements by, bq,...,b, have been found. Because both a; and by are in
im(fr410...0 fne) and because by the assumption that the image of fri10...0 fy+1)
is equal to the image of fyy10...0 fym), we can find y € My 1) with

ap — by = fy410...0 fN(k—i—l)(y)‘

Define
b1 := —fr420...0 fN(k-i—l)(y)'

Then
b — fra1brr1 = by +ap — by, = ay, .

Thus (ax) € im&.

e If for some ¢ the element a; is not in the image fi110...0 fyu): Myu — M;, then we
consider the sum

a; = a; + fir10i1 + ...+ fiz1 0.0 fa (an))-
We check that
a; — (G; - f¢+1(a§+1)) =a; — a; — fi+1(ai+1) — .. fi+1 ©...0 fN(i)(aN(z')>

+ fir1(aiv1) + fir1 0 fira(aive) + ... + fiyi 0o 0 [y (angv)
= fiy10...0 fN(i)+1<aN(z‘)+1> +...+ fiy10...0 fN(i+1)(aN(i+1))

and therefore a;— (aj— fiy1(aj,,)) is in the image of f;;10...0 fy(it1). As in the preceeding
case, we write a; — (a; — fiy1(ai,,)) as b; — fiz1biy1. Thus

a; = ¢; — fiz1(Ciy1)

with ¢; == b; + al.
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Examples 2.12.6.

1. If every map f; is surjective, then the inverse system (M;, f;) satisfies the Mittag-Leffler
criterion with N(n) = n + 1. For instance, the inverse system of rings

Z|pZ «+— T.|]p*7 +— T)p°7 +— ...

satisfies this condition. The inverse limit of this system is a ring, called the p-adic integers.

These are denoted by Zp and they are the p-adic completion of the ring of integers.

2. We want to apply Lemma [2.12.5]to inverse systems of cochain complexes.

Assume that X is a CW complex and that (X,,), is a sequence of subcomplexes with
X, C Xy41 and X = {J,, X,,. For instance, we could take X,, = X", the n-skeleton of X.
Consider for each n the cochain complex

SHX) = S"(X,).
The inclusion maps X,, C X,, ;1 induce maps of cochain complexes
far1: Shia(X) — Sp(X) .

We therefore have an inverse system
Si(X) I sr(x) =
0 1 .

which are maps of cochain complexes, i.e. commute with the coboundary maps

i frtr i

|s £
SitL (X)) DL si(x).

Lemma 2.12.7.
If (C%, f) is an inverse system of cochain complexes, such that for every cochain degree m the
inverse system (C!", f,,) satisfies the Mittag-Leffler condition, then the sequence

0= lim'H™Y(C}) — H™(im Cy) — lim H™(Cy) — 0

is exact.
Proof.
We consider for fixed degree m the two obvious exact sequences
0—-B"—Z"— H™C) =0 (2)
and
0— Zm —s C™ 2oy gl ), (3)
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1. As the C)" are supposed to satisfy the Mittag-Leffler condition, Lemma [2.12.5] implies
that
l'&nlC?T =0, forall m. (4)

Lemma applied to the short exact sequence implies that the sequence
1&11(];:‘ — @1321“ —0
is exact and thus 1&1 1Bm+1 = (. Therefore the sequence yields that
I'&an;” = l'Lmle(C:;) .
2. In addition we know, again from Lemma applied to , that the sequence
0 — lim Z" — Lm G} el lim B!

is exact and hence the inverse limit of the m-cocycles is equal to the module of m-cocycles
in the inverse limit complex, i.e.

lim 2 & 2 (Hm (7))
3. As the lim-one term on the inverse system of coboundaries is trivial by 1., we obtain from
that the sequence
0 = lim B* — lim Z7" — lim H™(C}) — 0
is exact as well. Lemma [2.12.4] applied to tells us that the kernel of the connecting
homomorphism
0: m By — Im'Z7™ =0 (%)
is isomorphic to the image of the map
lim 4y,
lim €~ 55 Jim By
and thus to the coboundaries, i.e.
Bm(@ Cr) = ker0 .

Thus, we get an inclusion B™ (1&1 Cr) C lim B". Therefore we get the following sequence
of inclusions

B"(imCy) C m By C lm 20" = Z(im Cy)  (s3) .
where the last identity is 2.

4. Recall that for any inclusion A C B C C' of submodules, the diagram

0 0 0

0 A—4 4 0 0

0 B C C/B—=0
id

0 B/A C/A—>C/B—=0
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has exact rows and the first two lines are exact so that by the nine-lemma the last row is
exact.

5. Applied to the inclusion (*x) of submodules this yields the short exact sequence
lim B Z"(lim C* lim 2"
fm By Z"(imG) lm Z;

"7 BeGmey)  BmCy By

0

is exact. The middle term is the cohomology H™(lim C}) of the inverse limit complex.
The right term is isomorphic to lim H™(C?) and the left term is isomorphic to the lim-one
term lim ' H™~1(C*) because the kernel of 9 is Bm(@ C*) and thus by (x) the quotient
is lim Zm-l~ l’&anmfl(C;) by 2.

g

Theorem 2.12.8 (Milnor sequence).
If X is a CW complex with a filtration Xg C ... C X,, C X,,;1 C ... of subcomplexes with
X =J,, X», then the sequence

0= lm'H" (X, G) — H™(X;G) — Im H™(X,;G) = 0

is exact for all abelian groups G.

Proof.
e We define C = Hom(S,(X,,), G). This system of cochain complexes satisfies the Mittag-
Leffler condition because the inclusions of chains

dualize to epimorphisms

Hom(S,,(Xy4+1), G) — Hom(S,,(X,), G) .

e The only thing we have to show to apply Lemma [2.12.7]is that for the term in the middle
H™(X;G) = Hm(l'LnHom(S*(Xn),G)) )
By Remark 2.12.3]1, the inverse limit has a universal property dual to the one of the
direct limit and the maps induced from the inclusions X,, — X
Hom(S.(X),G) — Hom(S.(X,),G)
induce a homomorphism

Hom(S.(X),G) — l'ngom(S*(Xn), G) .

e To see that this is an isomorphism, first note that if a space X is the union of a directed
system of subspaces X, with the property that each compact subset of X is contained in
some X,, then for homology the map

%ﬂ SZ(XQ, G) — SZ(X, G)
is an isomorphism for all abelian groups G. (Note that by Corollary |1.11.16]1, this applies
to a filtration by subcomplexes.)

Indeed, for surjectivity, represent a cycle on X by a sum of finitely many simplices. The
union of their images is compact in X and thus contained in some X,, which ensures
surjectivity. For injectivity, if a cycle in some X, is a boundary in X, by compactness, it
is a boundary in some Xz D X, hence represents zero in @Hi(Xa; G).
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e The dual of this argument then shows the claim.

Example 2.12.9.

We consider the infinite complex projective space CP*. It is defined as a limit lim CP"™. This
space has a natural structure of a CW complex with a cell in every even dimension. To apply
Theorem [2.12.8] we consider the skeleton filtration, i.e.

X(]:ptCXlz(CPICXQ:CPZC
Thus X, is the 2n-skeleton of CP*°. The Milnor sequence [2.12.§]in this case is for each m
0 — Lm'H™Y(CP") — H™(CP*) — Im H™(CP") = 0 ().

However, the maps H™ '(CP"*!) — H™ '(CP") are surjective. By Remark [2.12.6/1, this
inverse system satisfies the Mittag-Leffler condition and thus by Lemma [2.12.5

r&n le_l(CPn) =0
and therefore (x) gives isomorphisms
H™(CP>) = lim H™(CP").

The inverse limit of truncated polynomial rings Z[a] /o™ is isomorphic to the ring of formal
power series. Recall that for a commutative ring R, the ring R|[[z]] of formal power series is the
set RN of sequences with value in R with addition (a,) + (b,) = (a, + b,) and multiplication
given by a Cauchy product (a,) - (b,) = (D p_; akbn—r).

Corollary 2.12.10.

H*(CP>) = Z[[a]], with |a| =2,
where Z[[a]] denotes the ring of formal power series in «.

The arguments are analogous for the infinite real and quaternionic projective spaces, RP*>
and HP*>.

Corollary 2.12.11.

H*(RP*;Z/27) = 7.)27[[]], with |a| =1
and
H*(HP>) = Z[[a]], with |of =4.
Remark 2.12.12.
1. At times, the cohomology of a space is considered as a direct sum
HY(X;G) =P H"(X;G) .
n=0

From that point of view, we only have finite sums in H*(X; G) so that this interpretation
yields the identification of H™(CP>) and H*(RP>;Z/27) as a polynomial ring: the
formulae
H*(CP*) = Zla] with |a| =2
and
H*(RP>,Z/27) = 7Z/2Z]a] with |a| = 1.

can be found in the literature as well.
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2. However, viewing homology H,(X) as a direct sum @, H,(X) and for free H.(X) the
cohomology as a dual, then the description of H*(X) as a product [[, H"(X) is more
natural.

2.13 Lens spaces
Observation 2.13.1.

1. Let m € N and let {4, ..., {, be natural numbers with ged(m, £;) =1 for all i and assume
n > 2. Choose a primitive n-root of unity ( := e and define an action of Z/mZ on
S2n—1 by

0: Z/mZ x ™1 — sl
(CG21yenyzm) = (B2, (),
where we view S ! as a subspace of C".
2. This action is free: if o(C";21,...,2n) = (21,...,2,) for some (z1,...,z,), then we have

("iz; = z for all i. Since there exists i such that z; # 0, we find ("% = 1 and thus
rf; = 0 mod m. Since ¢; is invertible modulo m, we find » = 0 mod m.

Example 2.13.2.
If m = 2, then the all integers ¢; must be odd and therefore the action

0: Z)27 x S — §*1
is the antipodal action.

We consider the quotient spaces S*"~! /(Z/mZ).

Definition 2.13.3
The space L = L(m;{y,...,0,) = S* ' /(Z/mZ) with the action as described in Observation
2.13.1| as above is called lens space with parameters (m;{y, ..., ¢,).

Remarks 2.13.4.
1. For m = 2 we get the real projective spaces L(2;(1,...,¢,) = RP?""! as lens spaces.

2. The classical case is the three manifold case: For integers p,q with ged(p,q) = 1 one
considers L(p, q) := L(p; 1,q) = S*/Z, with (; 21, 22) — (C21,(%2)

3. Note that the projection map m: S**~! — L(m;{y,...,{,) is a covering map, because
the Z/mZ-action is free.

We now want to consider CW structures on lens spaces that generalize the CW structures
on projective spaces.

Observation 2.13.5. -
1. We start with a CW structure on S' that has m zero cells {e™= ,1 < j < m} and m one
cells.

2. Let B?”_Q be the subset of C*

2mij

B2 = {cos0(0,...,0,em ) +sinf(z,. .., 2,-1,0)]
0 < 0 < 7T/27 (Zla s 7Zn—1) € SQn—S}’

i.e., we connect the point (0,...,0,e m ) with all the points (21, ..., 2,_1) € S* 3 via
quarters of a circle. Thus we obtain a space homeomorphic to a (2n — 2)-dimensional disc,
BJ?”’Q >~ D22, A calculation shows that BJZ"’2 c S
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: . . 2mij 2mi(j+l) _
3. If we connect all points on the circular arc in S* between em and e~ m ~ with §?"73,

again via quarters of a circle, we get a (2n — 1)-dimensional ball B?”_l contained in S?*~1
with boundary

OB =B U BT (%)
The two boundary discs B?”_Q and B?ZIQ are attached to each other via their common
boundary §**~3. Thus B;"~" looks like a (2n— 1)-dimensional lens. The union of all B;"~
is §?n1.

4. We have to understand the Z/mZ-action g on these cells. It restricts to the subspace
S?=3 e, o(S*73) C S?73. The arcs between the points eZl and e on S are
permuted by o and therefore ¢ permutes the (2n — 2)-dimensional balls B?”_Z and the

(2n — 1)-dimensional balls sz-"_l.

For any r € N with ¢, = 1 mod m, the map o" has order m as well and

r . 2n—2 2n—2
0 |BJ2,"72‘Bj —)Bj+1 R

because
0 2mij 2mirly  27ij 27i(j+1)

Thus, ¢" identifies the two faces of B?"_l, cf. (x). Each of the balls B;”_l is a fundamental
domain of the ¢"-action. Thus
= B]Zn—l/gr

forany j=1,...,m.
5. There is a natural inclusion

L(m;ﬁl, Ce ,gnfl) C L(m,fl, . ;gn)

which is given by mapping the class [(z1,...,2,-1)] to [(z1,...,2n-1,0)]. Representing
the (2n — 3)-dimensional lens space L(m;{y,. .., ¢,_1) as Bi""®/ ~, we see that we can
build L(m; ¢y, ..., ¢,) out of L(m;{q,...,¢,—_1) by attaching the (2n — 1)-cell B?”_l and a
(2n — 2)-cell BJZ"’Q. Note that we really just have to take one of the latter, because Bf"’Q
is identified with its neighbour Bffl_z in the quotient.

Inductively we get a cell structure of L with one cell in each dimension up to 2n — 1.

Example 2.13.6. _
For n = 2, the lens spaces are quotients of S3. Let m =5 and ¢/, =1 and {, = 2, so ( = e’s
Then the B} are 3-balls with boundary B? and B}, ;. The 2-balls B? consist of elements

cos (0, eﬁ) +sinf(z,0) for z € S' and 0 < 0 < 5; these are the two-dimensional discs
(sinfz, cos Heﬁ) eSPcC?.

Observation 2.13.7.

1. Let us consider the cellular chain complex of the lens spaces. In Observation [2.13.5.5, we
constructed a CW structure such that

C(L)=7, %=0,....2n—1 .

Let o be the cell corresponding to the ball Bj’?. We need to compute the boundary maps.
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2. The top cell has trivial boundary,
d(o_Qn—1> _ 0_277,—2 _ O_2n—2 =0

because the topological boundary of B?”’l is the union of two balls one dimension lower
which are identified in the quotient.

3. The boundary of the cell 02"~2 is S?"3 and the attaching map is the quotient map
82n73 — L(m, 61, c. ,gnfl) .
The action p permutes the cells cyclically, and we get degree m:

d(o_Qn—Q) — mO_Qn—?) )

By induction we see that the boundary maps are given by multiplication by zero respec-
tively m. Thus the homology of the lens space is the homology of the cellular complex

072 -Y7z ™y % M7 %7 40

and thus
7, x=0,2n — 1,
H.(L(m;tly,...,0,)) =< Z/mZ, *oddand < 2n—1,
0, otherwise.

Note that we also get Hy(L) = m(L) = Z/mZ from covering theory because 71 (S**~!) = 0
for n > 2 and thus S**~! is a universal cover of L.

4. As the top homology group is Z, Theorem [2.6.11] implies that lens spaces are compact
connected orientable manifolds of dimension 2n — 1.

The universal coefficient theorem immediately gives for cohomology with coefficients
in Z,:

Lemma 2.13.8.
The additive cohomology groups are

Z/mZ, for all degrees 0 < * < 2n—1

AL 2/mZ) = {O * > 2n —1

Note that the homology groups of L with coefficients in Z/mZ are isomorphic to the coho-
mology groups just by using the universal coefficient theorem [1.14.1

Hy(L; Z/mZ) = Hy(L; Z) @ Z./mZ & Tor(Hy_1(L),Z/mZ)

or by applying Poincaré duality [2.8.3] since L is compact and orientable.
We now focus on the case when m = p is a prime.

Proposition 2.13.9.
Let L = L(p;¢y,...,0n1) be a lens space. Denote by a € HY(L;Z/pZ) and 3 € H*(L;Z/pZ)
(additive) generators. The cohomology group H’(L;Z/pZ) is then generated by

B, for j = 2i
aft,  for j =2i+1.
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Proof.
We prove the claim by induction on n.

e For n = 1, we have a three-dimensional lens space L = L(p;{1,45). If « € H'(L; Z/pZ)
and 3 € H*(L;Z/pZ) are generators, then a cup product pairing argument from Lemma
2.11.4/shows that a'U 3 is a generator in degree three. We have to understand what o? is:
if p is odd, then by the graded symmetry of the cup product, we have a® = 0. For p = 2
we know that the lens space is RP3. In this case, by Corollary , a? is a generator
of H*(L,Z/27). Thus, it is equal to 8. In all other degrees, the cohomology groups are
trivial.

e Assume now that the claim is true up to degree n. We consider the inclusion
L(p; by, ..., 0) = L(p;ty, ... loyy) = L1

Up to degree 2n — 1 this inclusion gives rise to an isomorphism on cohomology groups. We
know that 3¢ generates the cohomology groups up in even degrees j = 2i < 2n—1 and /3"
generates the cohomology groups in odd degrees j = 2i + 1 < 2n — 1. An argument as for
projective spaces, cf. Lemma , then shows that SUB" ! generates H**(L*"™': Z/pZ)
and U aB" ! = aff” generates H*" (LT 7 /pZ).

g

Corollary 2.13.10.
1. As graded rings

Ae) @ Z/pZ[B)/B"*, p>2,
H*(L(p; b1, ..., lhi1);Z)pZ) =
(e b {Z/pZ[aJ/aw, p=2
2. Fix a prime p and a sequence ({1, s, ...) of integers coprime to p. Let L denote the direct
limit of any system of the form

L(pi by, lsr) C L(pila, - lna) ©

then
Aa) @ Z/pZ][B]], p>2,

H*(L;Z/pZ) =
Z/pZ{[a]], p=2.

Proof.

The second claim follows with the help of the Milnor sequence [2.12.8| as in Example [2.12.9] [J

Remark 2.13.11.
Note that these cohomology groups do not dependent on the ¢;’s.

Lens spaces of dimension three give rise to important examples of orientable connected and
compact 3-manifolds that have the same fundamental group and homology groups, but that are
not homotopy equivalent. For instance the lens spaces L(5;1, 1) and L(5; 1, 2) are not homotopy
equivalent (cf. Hatcher, exercise 3.E.2), but have the same fundamental groups and the same
homology groups.
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Observation 2.13.12.
We can interpret the generator § in terms of the so-called Bockstein-homomorphism.
The two short exact sequences of abelian groups

0-ZB3Z57Z/pZ -0 and 0 — Z/pZ B Z/p*7 — 7)pZ — 0
give rise to short exact sequences of cochain complexes

0— SX;Z)— SY(X;Z)—  SYX;Z/pZ)— 0
0— SYX;Z/pZ)— S*(X;Z/p*Z)— S*(X;Z/pZ)— 0

and we get by Lemma [1.5.6] a corresponding long exact sequences of cohomology groups. Let
B: H"(X;Z/pZ) — H"'(X; Z)
be the connecting homomorphism for the first sequence, let
B: H'(X;Z/pZ) — H™(X: Z/p2)
be the connecting homomorphism for the second sequence and let
pe: H"HX;Z) — H (X Z/pT)

be induced by the reduction of the coefficients mod p. Then [ is called the
Bockstein homomorphism.

Lemma 2.13.13.
For all n, the diagram

H"(X: Z/pZ) —"— H"™(X; Z)

H" (X, Z/pZ)

commutes.

Proof.
For the proof just note that the diagram relating the two short exact sequences

0 7—2L -7 —L57/p7 —0

Tk

0 — Z/pZ—2>7.)p* L — L./ pZ. — 0

commutes and therefore we obtain the commutativity of the connecting homomorphisms, the
naturality statement of Proposition [1.5.5] implies

H™(X;Z/pL) —"— H"(X; Z)

L

H"(X: Z/pZ) —"~ H" (X Z/pL).

g

With the help of this auxiliary result we will show that the class g €
H?(L(p; {1, ...,0n1); Z/pZ) in Proposition is the image of the Bockstein homomorphism
applied to a, i.e. § = («). We discuss the example p = 2, i.e. the cases of real projective spaces
of odd dimension in detail; the cases for odd prime are similar.
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Proposition 2.13.14.
The Bockstein homomorphism 3: H"(RP>;Z/2Z) — H""'(RP>;Z/27Z) is an isomorphism
for odd n and is trivial for even n. In particular, 8(a) = o?.

Proof.
Consider the diagram

Hn+1(RPOO;Z)
-2
H'(RP®;Z/2Z) —— H" (RP®; Z) — 2~ H™(RP>;Z)

X
Px

H™L(RP>;7,/27)

B
2 (]RPOO; Z)

o If n is odd, then n + 1 = 2k for some k and then H?**(RP>;Z) = 7,/27 so that the
multiplication by 2 is trivial. The horizontal exact sequence then implies that B is surjec-
tive. But both adjacent groups are Z/27Z, thus B is an isomorphism, since any surjective
endomorphism of Z /27 is an isomorphism.

e For even n, the groups H" ™ (RP>;Z) are trivial, hence in these degrees 3 =0, and also
the Bockstein homomorphism S = p, o 8 vanishes for even n.

e The same fact implies that for odd n, the lowest arrow in the exact column is zero. Thus
ps: H"W(RP>;Z) — H"T(RP>;Z/27Z) is surjective and, by the same arguments, an
isomorphism and therefore § is an isomorphism.

i

Remark 2.13.15.
Using that 8 is a connecting homomorphism and thus defined using a coboundary, one can use
the Leibniz rule [2.5.10L3 to show that it is a derivation with respect to the cup product:

Blauq) = Bla) Uy + (—1)aup(y).

The Bockstein homomorphism is one example of a cohomology operation.

2.14 A first quick glance at homotopy theory

The definition of a fundamental group has an obvious generalization:

Definition 2.14.1
Denote by I := [0, 1] the standard interval and by I"™ C R™ the n-dimensional unit cube.

1. For a space X with base point o € X, we denote by 7,(X,xy) set of homotopy classes
of maps

F:(I"0I" — (X, ) ,
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where homotopies are required to satisfy F,(0I") = xz for all t € [0,1]. (For n = 0, take
I° to be a point and OI° = () so that 7o(X) is the set of path-connected components of
X.)

2. For a subset A C X and a base point xy € A, take for n > 1 the subset I"~* C 0I"
the points with last coordinate s, = 0; they are homeomorphic to an (n — 1)-dimensional
cube. Finally let J"~! be the closure of the complement OI" \ I"'. Then 7,(X, A, zo) is
the set of homotopy classes of maps

(1", 81", J™Y) = (X, A, z0)

Observation 2.14.2.

1. Generalizing the case of the fundamental group n = 1, we turn 7, (X, o) into a group
with composition defined by operations involving the first coordinate,

o f(2s1,...,8,) for s €[0,1]
(f+9)(s1, 82, n) = { g(2s1 —1,...,s,) for s € [%,1]

This is well-defined on homotopy classes; since only the first coordinate is involved, the
same arguments as for the fundamental group show that we obtain a group structure.
The group m, (X, x¢) is called the n-th homotopy group of X.

2. A sequence of homotopies shows that for n > 2, the group , (X, z¢) is abelian. Note that
for this process, we only need the two coordinates s1, so.

Similar arguments as for the fundamental group show that the different base points yield
isomorphic homotopy groups. Indeed, the fundamental group 7 (X, x¢) acts on all groups
(X, zo); for n = 1 this is the inner action of m (X, zg) on itself.

3. In the relative case, the last coordinate s, plays a special role. For this reason, 7, (X, A, o)
has the structure of a group only for n > 2. It is abelian for n > 3. We call it the
relative homotopy group. (The set 71 (X, A, z¢) is the set of homotopy classes of paths in
X from a varying point in A to the base point x.)

Familiar features of the fundamental group can be extended:

Observation 2.14.3.
1. A covering (X, &) — (X, z0) induces an isomorphism p, : m,(X, %) — 7, (X, z) for
n = 2.
Indeed, injectivity follows from [Topologie, 2.7.13] and surjectivity from the fact that the
maps " — X factorize to maps S" — X and that S” is simply connected for n > 2.

2. As a consequence, m,(X,z) with n > 2 vanishes for all spaces X with a contractible
cover, e.g. the sphere S' with cover R or the torus 7™ with cover R™. Such spaces are
called aspherical.

3. Base-point preserving maps of pairs ¢ : (X, A, x9) — (Y, B,yo) give rise to maps ¢, :
(X, A, x9) = m,(Y, B, y0). They obey the familiar relations id, = id and (fog). = f.0gs..
Homotopic maps ¢, ¢’ : (X, A, z9) — (Y, B, y) give the same maps in relative homotopy,
e = Pl

4. We have for arbitrary products 7, ([ [, Xa) = [ 1, ™ (Xa)-

«
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5. Given an imbedding 7 : A — X and a base point xy € A, one gets a long exact sequence
T A, 20) 2 T (X, 1) i (X, A, o) LA Tn_1(A, z9) — ... = mo(X, z0)

of homotopy groups. Here j : (X, zg,x9) — (X, A, 29) and and 0 comes from restricting
maps (I, 01", J" ') — X to "%,

6. There is, however, no general analogue of the excision property for homology or the
Seifert-van Kampen theorem for the fundamental group, see however Theorem [2.14.8|
This makes homotopy groups difficult to compute, even for spheres.

However, homotopy is theoretically important, because it gives strong invariants, in partic-
ular for CW complexes:

Theorem 2.14.4 (Whitehead).
If amap f: X — Y between connected CW complexes induces isomorphisms f, : m,(X) —
m(Y) for all n > 0, then f is a homotopy equivalence.

In the case when f is the inclusion of a subcomplex with the same property, then X is even
a deformation retract of Y.

The proof is based on the following

Lemma 2.14.5 (Compression lemma).

Let (X, A) be a CW pair and let (Y, B) be any pair with B # (). Assume that for each n such
that X \ A has cells of degree n, we have m,(Y, B,yy) = 0 for all yo € B. Then every map
f (X, A) — (Y, B) is homotopic relative A to a map X — B, i.e. we can homotop the map
such that the image isin B C Y.

Proof.
Assume inductively that f has been homotoped to take the skeleton X*~! to the subspace B.
Let ¢ be the characteristic map of a k-cell e* of X \ A. The composition

fop: (D* oD*) — (Y,B)

can be homotoped relative 9D* into B, since we assumed (Y, B, o) = 0 for all y, € B.
This homotopy induces on the quotient space

XFtuDk — xXFtug ek

a homotopy relative X*~1. We do this for all k-cells of X'\ A at once, take the constant homotopy
on A and get a homotopy of the restriction f|xx 4 to a map into B.

Inductively, we settle the case when the dimension of the cells of X \ A is bounded. In
general, deal with X* during the t-interval [1 — 27 1 — 2= (*+1)], O

Proof.
of Whitehead’s Theorem 2.14.4]

e First suppose that f is the inclusion of a subcomplex. Consider the long exact sequence
5 for the pair (Y, X). Since f induces isomorphisms on the homotopy groups,
the relative homotopy groups m, (Y, X) vanish. Applying Lemma to the identity
(Y, X) — (Y, X) yields a deformation retraction of Y onto X, as claimed.
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e Now consider the mapping cylinder My of f : X — Y: this is the quotient
X xIUY — M;

under the identification (z,1) ~ f(x). Thus M contains X = X x{0} and Y as subspaces.
M/ deformation retracts to Y. Thus f is a composition

X =My =Y

of an inclusion and a retraction. A retraction is a homotopy equivalence; thus it suffices
to show that M retracts onto X, if f induces isomorphisms on the homotopy groups (or,
equivalently, if all relative groups m, (M, X') vanish).

e If f happens to be cellular, then (My, X) is a CW pair and we are done by the first part of
the proof. In the general case, one can invoke a theorem that f is homotopic to a cellular
map.

U

Remarks 2.14.6.
1. We do not claim that any two CW complexes with isomorphic homotopy group are homo-
topy equivalent; rather the existence of a map f inducing the isomorphisms in homotopy
is required.

As a counterexample, consider X = RP? and Y = S? x RP*. Both have fundamental
group Z,; their universal covers are X = S? and ¥ = S? x S*® which are homotopy
equivalent, since S* is contractible. Thus Observation [2.14.3/1 implies that the homotopy
groups are all isomorphic.

But the two spaces cannot be homotopy equivalent, since their homology differs: since
Y = §? x RP™ retracts to RP*, it has non-vanishing homology in infinitely many
components, in contrast to X.

2. There is a CW complex, unique up to homotopy, which has the property that it has a
single non-vanishing homotopy group G in degree n. Such a space K(G,n) is called an
Eilenberg-Mac Lane space. (The group G has to be abelian for n > 1.)

Cohomology classes for a CW complex X correspond bijectively to homotopy classes of
maps X — K(G,n): for any abelian group G and for all CW complexes X, there is for
n > 0 a natural bijection

T:[X,K(G,n)] — HY(X;G) .

More precisely, there is a distinguished class « € H"(K (G, n); G) such that T'(f) = f*(«).
This is a strong link between homotopy theory and cohomology theory.

3. For CW complexes, we can replace maps within the same homotopy class by cellular maps:
every map f : X — Y of CW complexes is homotopic to a cellular map. If f is already
cellular on a subcomplex A C X, then the homotopy may be taken to be stationary on
the subcomplex A.

As a consequence, T, (S*) = 0 for n < k. Indeed, with with usual CW structure on spheres
consisting of a 0-cell and a top-dimensional cell, cf. Example [[.11.4]3, and the O-cells as
base points, any map S — S* can be homotoped fixing the based point to a cellular map
which is thus constant.
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We finally state a generalization of Proposition [1.3.8 which relates homotopy groups to
homology groups:

Theorem 2.14.7 (Hurewicz). )
If a space X is (n — 1)-connected with n > 2, i.e. if m;(X) = 0 for all i < n— 1, then H(X) =0
fori <n—1and m,(X) = H,(X).

Thus the first nonzero homotopy and homology group of a simply-connected space occur in

the same degree and are isomorphic.
We finally explain the best available analogue of excision:

Theorem 2.14.8.

Let X be a CW complex that is decomposed as the union of subcomplexes A and B with
non-empty connected intersection C' := AN B. Suppose that (A, C') is n-connected and (B, C')
is m-connected, with m,n > 0. Then the map

7Ti(A, C) — 7Ti(X, B)
induced by the inclusion is an isomorphism for ¢ < m + n and a surjection for ¢ = m + n.
This yields

Corollary 2.14.9 (Freudenthal suspension theorem).
The suspension map
mi(S") = T (S")

is an isomorphism for ¢ < 2n — 1 and a surjection for ¢ = 2n — 1. More generally, this holds
for the suspension 7;(X) — m11(XX) of any (n — 1)-connected CW complex X. (Note that by
Remark [2.14.6,3 X = S™ is (n — 1)-connected.)

Proof.
Decompose the suspension »X as the union of two cones C'L X intersecting in a copy of X.
Inclusion gives us by Theorem [2.14.8 a morphism

7TZ'+1(O+X,X) — 7Ti+1<EX7 C_X> (*) .
The long exact sequence for (C X, X)
R WZ(X) — 7TZ(0+X) — 7TZ‘(C+X7 X) — 7TZ'_1(X) — 7Ti_1<C+X) — ...

together with the fact that the cone Cy X is contractible shows for the left hand side of (x) the
isomorphism 7;1(C1 X, X) = m;(X). The long exact sequence for (XX, C_X)

o= 0=m(CX) 5 m(EX) > m(EX;C_X) 5 m1(C_X)=0— ...

shows that 7TZ'+1(EX, C_X) = Ti+1 (ZX)
Now suppose that X is (n — 1)-connected. Then the first long exact sequence implies that
the pairs (CL X, X) are n-connected. By Theorem [2.14.8| the inclusion map is an isomorphism

for i + 1 < 2n and surjective for i + 1 = 2n.
O

Corollary 2.14.10.
We have 7, (S") = Z for all n > 1, with the identity map as a generator. In particular, the
degree provides an isomorphism 7, (S") — Z.
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Proof.
From Corollary [2.14.9, we know that in the suspension sequence

m1(SY) = m($?) = m3(S?) — ...

the first map is surjective and all other maps are isomorphisms. Since 7 (S!) is infinite cyclic,
generated by the identity map, it follows that all other groups 7, (S") are finite or infinite cyclic
groups generated by the identity map.
The group cannot be finite: there exist base-point preserving maps S™ — S™ of arbitrary
degree, cf. Lemma for a weaker statement, and the degree is a homotopy invariant.
The degree map is an isomorphism, since the map z — z of S' has degree 1 and so do by
Lemma its iterated suspensions. O

A English - German glossary

English German

boundary Rand

chain complex Kettenkomplex

chart Karte

cone Kegel

connecting homomorphism | Verbindungshomomorphismus
cycle Zykel

excision Ausschneidung

hairy ball theorem Satz vom gekdmmten Igel
lens space Linsenraum

manifold Mannigfaltigkeit

skeleton Gertist

support Trager

suspension Einhangung
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Index

p-adic integers, (132 degree,
Cech cohomology, |116 degree of a map, [104
S diagonal approximation,
abelianization, diagram chase,
acyclic complex, 2] diameter,
affine simplex, differential,
Alexander-Whitney map, dimension
antlpodal map, dimension axiom,
aspherical space, [146 direct limit,
atlas, direct sum,
att.achlng map, [46] direct system,
axioms of a cohomology theory, directed poset

barycentric subdivision, directed system,

Betti number, Eilenberg-Mac Lane space, [148

Bockstein homomorphism, [143 Eilenberg-Zilber theorem,
boundary, euclidean neighborhood retract,
boundary operator, I, [7] exact sequence, [T

cell, excision, [32]

cell decomposition, external cup product,

cellular chain complex, face map,

cellular map, fibration,

chain, finite CW complex, [46]

chain complex, five-lemma,

chain homotopy,

: . free abelian group, [6]
chain homotopy equivalence,

free chain complex, [68]

chain map, free resolution,

characﬁ"istic map, [46] front face,

chart, 96

closed manifold. fundamental class,
closure finite condition, Hairy Ball theorem, [44]
coboundary operator, [77] homology cross product,
cochain complex, [77] homology group,

cofibration, homotopy extension property,
cohomology cross product, homotopy group, [145
cohomology group, homotopy lifting property,

cohomology group with compact support, Hurewicz-homomorphism,
compact-open topology,

cone, [26] [39] intersection form, 126
connecting homomorphism, inverse limit,

cup product pairing, [125 inverse system, [129]

cup-product,
CW complex,
CW pair, lens space, [138

cycle, locally Euclidean space,
long exact sequence,

Kronecker pairing, [79)

deformation retract,
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manifold, [97]

map of cochain complexes,
Milnor sequence, [135
Mittag-Leffler condition, [I31]

orientable manifold,
orientation, 0]

paracompact, [54]
Poincaré duality map, (112

polyhedron,

rear face,
reduced homology,

relative boundary,
relative chain,

relative chain complex,
relative cycle,

relative homology group,
relative homotopy group, (146

relative Mayer-Vietoris sequence,

short exact sequence,

simplex,
simplicial complex, [47]

simplicial map,

singular n-cochains with compact support,

singular chain complex,
singular chain module, [f]
singular cochain group,
singular simplex,
skeleton,

standard resolution,
subcomplex,

suspension, 0]

suspension isomorphism, [40]

tensor product,
topological Kiinneth formula, [70]

universal coefficient theorem,

vertex, [28]

weak retract,
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