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1 Modules over rings

1.1 Foundational definitions

Rings will play a central role in this lecture. We thus recall some concepts:

Definition 1.1.1
1. A ring is an abelian group with group operation denoted additively (R,+), equipped with

a map
R×R → R
(x, y) 7→ xy ≡ x · y ,

called multiplication, for which the associative law

(xy)z = x(yz) for all x, y, z ∈ R

and the two distributive laws hold:

(x1 + x2) · y = x1 · y + x2 · y and x · (y1 + y2) = x · y1 + x · y2

for all x, x1, x2, y, y1, y2 ∈ R. Note that (R, ·) is an associative monoid. The existence of
multiplicative inverses is not required.

2. A ring with unit (or unital ring) is a ring with a unit element 1 ∈ R, such that 1 · x =
x · 1 = x for all x ∈ R holds. In this case, (R, ·) is a unital associative monoid.

3. A ring (R,+, ·) is called commutative , if the monoid (R, ·) is abelian, i.e. for all x, y ∈ R
the equation x · y = y · x holds.

4. If R, S are rings, then a ring homomorphism f : R → S is a map f : R → S, which
respects both the abelian group and monoid structures on R and S:

f(x+ y) = f(x) + f(y) and f(xy) = f(x) f(y) for all x, y ∈ R .

For unitary rings we additionally require morphisms of rings to send

f(1R) = 1S .

We denote the set of all ring homomorphisms by Hom(R, S).

In this lecture we adopt that convention that by a ring we mean an associative, not neces-
sarily commutative ring with unit.

Examples 1.1.2 Important examples for rings are:

1. The ring Z of the integers (and, more generally, the ring of integers in an algebraic number
field).

2. Fields such as the rational numbers Q, the real numbers R or the complex numbers C are
(commutative) rings.

3. For every commutative ring R, the polynomial ring R[X] is again a ring; more about this
later.

4. For every associative unital ring R, we also have the ring Matn(R) of n×n-matrices with
entries in R.
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5. Let U ⊂ Rn be an open subset. Then the real-valued functions on U as well as the
differentiable and analytic functions on U form rings. More generally, one can also consider
functions on manifolds.

6. The ring Z of integers is the initial unital ring: for every (unital) ring R there exists a
unique (unital) ring homomorphism f : Z → R and it is determined by f(1) = 1R. To
see the latter, note that

f(n) = f(1 + . . .+ 1︸ ︷︷ ︸
n−times

) = f(1) + . . .+ f(1)︸ ︷︷ ︸
n−times

determines the ring homomorphism uniquely.

7. The terminal unital ring is the null ring {0}, the unique unital ring in which 1 = 0 holds.
For every ring R there exists a unique ring homomorphism f : R→ {0}

We will need the appropriate generalization of vector spaces and linear maps over rings
instead of fields. In the case of non-commutative rings we have to be more careful and distinguish
three concepts:

Definition 1.1.3

1. A left module over a ring R is an abelian group (M,+), equipped with a map

µ : R ×M → M
(r,m) 7→ µ(r,m) ≡ r.m ≡ rm ,

the (scalar-)multiplication, such that for all x, y ∈ R and m,n ∈M we have:

µ(x,m+ n) = µ(x,m) + µ(x, n) resp. x.(m+ n) = x.m+ x.n
µ(x+ y,m) = µ(x,m) + µ(y,m) resp. (x+ y).m = x.m+ y.m

µ(x, µ(y,m)) = µ(xy,m) resp. x.(y.m) = (x · y).m

The first two equations express that the scalar multiplication is bilinear (or rather: bi-
additive). The third equation is a mixed associativity law. For modules of unital rings we
additionally require

µ(1,m) = m resp. 1.m = m

for all m ∈M .

2. If M,N are left modules over the same ring, then we call a map f : M → N a
module homomorphism, if it is compatible with addition and scalar multiplication:

f(m+ n) = f(m) + f(n)
f(r.m) = r.f(m)

We also call such a map an R-linear map. A bijective homomorphism of modules is called
an isomorphism. We denote by HomR(M,N) the set of all such morphisms. If the ring is
obvious from the context, we also write Hom(M,N).

3. A right module over a ring R is an abelian group (M,+), equipped with a (scalar) mul-
tiplication

µ : M ×R → M
(m, r) 7→ µ(m, r) ≡ m.r ≡ mr ,
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such that for all x, y ∈ R and m,n ∈M we have:

µ(m+ n, x) = µ(m,x) + µ(n, x) i.e. (m+ n).x = m.x+ n.x
µ(m,x+ y) = µ(m,x) + µ(m, y) i.e. m.(x+ y) = m.x+m.y

µ(m,x · y) = µ(µ(m,x), y) i.e. m.(x · y) = (m.x).y

For unital rings we additionally require

µ(m, 1) = m i.e. m.1 = m

for all m ∈M .

4. Let R, S be two rings, not necessarily distinct. An R-S-bimodule is an abelian group M ,
that carries that structures of an R-left module (M,µ) and an S-right module (M, µ̃),
such that the condition

µ̃(µ(α,m), β) = µ(α, µ̃(m,β))

is satisfied for all m ∈M,α ∈ R, β ∈ S. In other notation:

(α.m).β = α.(m.β) .

5. Morphisms of right modules and of bimodules are defined analogously as in the case of
left modules.

Remarks 1.1.4
1. We will use the familiar order of operations ”multiplication/division before addi-

tion/subtraction”.

2. The ring multiplication exhibits every ring as a left module, a right module, and a bi-
module over itself. This module is called the regular left/right/bimodule.

3. If R is a field, then the left R-modules are exactly the R-vector spaces.

4. As in the case of vector spaces, one shows for all rings R and left modules M

0Rm = 0M for all m ∈M

and deduces (−1)m = −m. Analogous equations hold for right modules and bimodules.

Linear maps form a vector space themselves. Now let R be a ring and let M and N be two
R-modules. The sum of two module homomorphisms ϕ1, ϕ2 ∈ HomR(M,N) is defined (as in
the case of vector spaces) pointwise

(ϕ1 + ϕ2)(m) := ϕ1(m) + ϕ2(m) for all m ∈M

which equips the set HomR(M,N) with the structure of an abelian group. In the following,
we will always consider HomR(M,N) as abelian group. One might be tempted to extend this
definition by

(r.ϕ)(m) := r.ϕ(m) for all m ∈M and r ∈ R
to a (left) R-module. But for λ ∈ R one has

(rϕ)(λm) = rϕ(λm) = rλϕ(m)

and this would have to equal
λ(r.ϕ)(m) = λrϕ(m)

for r.ϕ to be R-linear. Unless the ring R is commutative, this will not be true, in general. In
summary:
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Theorem 1.1.5 Let R be a ring and M,N two R-modules. Then HomR(M,N) carries
the structure of an abelian group. If R is commutative, then HomR(M,N) carries a natural
R-module structure.

We add a few remarks about the connection between left modules and right modules:

Remarks 1.1.6

1. For a ring R, we denote by Ropp the opposite ring : this is the ring with the same under-
lying abelian group, but with multiplication

(x, y) 7→ µ(y, x) .

One can show: every R-right module (M,µ) can be considered via

µopp : Ropp ×M → M
(r,m) 7→ m.r := µ(m, r)

as an Ropp-left module. Conversely, every Ropp-left module determines an R-right module.

2. If R, S are rings and f : R→ S is a homomorphism of abelian groups, which satisfies

f(xy) = f(y) f(x) for all x, y ∈ R ,

then f is called an antihomomorphism. An antihomomorphism is a homomorphism from
Ropp to S or, equivalently, a homomorphism from R to Sopp. The rings R and Ropp are
thus always anti-isomorphic.

3. A ring R is commutative, if and only if the identity is an isomorphism from R to Ropp.
For a commutative ring R, remark (1) implies that every R-left module is naturally an
R-right module and vice versa. Indeed, every R-left module has even the structure of an
R-bimodule. For commutative rings R, we thus often drop “left” or “right” and simply
speak of R-modules, see e.g. Theorem 1.1.5.

4. There are non-commutative rings that are isomorphic to their opposite, albeit via a non-
trivial isomorphism. For example, the ring M(R, n× n) of quadratic n× n matrices over
a commutative ring R via the transposition, which switches the order of multiplication:

(AB)t = Bt · At .

Modules already carry an addition by their definition; now we consider modules over a
commutative ring R with the additional structure of a multiplication of module elements:

Definition 1.1.7

1. Let R be a commutative ring. An (associative) R-algebra is an R-module A, which carries
the structure of an (associative but, not necessarily unital) ring, such that the ring addition
agrees with the module addition and the compatibility condition

r(xy) = (rx)y = x(ry) (∗)

holds for all x, y ∈ A and r ∈ R. We call such a ring multiplication R-bilinear.

2. An algebra A is called unital, if it is unital as ring.

Remarks 1.1.8

4



1. For example the polynomial ring K[X] over a field K is a unital K-algebra. For a field
extension E/K, the field E is also a unital K-algebra.

2. The definition of a unital R-algebra A can also equivalently be expressed as: there exists
a ring homomorphism Φ: R → A with the property that Φ(r)a = aΦ(r) holds for all
r ∈ R and a ∈ A.

For a unital R-algebra A we may define Φ(r) = r.1A and find

Φ(r)a
def
= (r.1A) · a (∗)

= r.(1A · a) = r.a = r.(a · 1A)
(∗)
= a · (r.1A)

def
= a · Φ(r) .

Conversely, given the ring homomorphism Φ, we define an R-module structure on ring A
by

r.a := Φ(r) · a ,
which is indeed R-bilinear, i.e. (∗) holds

r.(ab) = Φ(r)(ab) = aΦ(r)b = a(r.b) .

Examples 1.1.9

1. Every abelian group (G,+) can be seen as a Z-module with scalar multiplication given
by:

Z×G → G

(n, x) 7→ nx =


x+ . . .+ x︸ ︷︷ ︸

n−times

n > 0

0 n = 0
−|n|x n < 0 .

2. Let M be an R-module. Then the map

M → HomR(R,M)

m 7→ (ϕm : r 7→ rm)

is an isomorphism of abelian groups. If the ring R is commutative, then HomR(R,M) also
carries an R-module structure and the above map is an isomorphism of R-modules since:

ϕrm(s) = s.(r.m) = (s · r).m = (r · s).m = r.(s.m) = rϕm(s)

The inverse sends a morphism ϕ ∈ HomR(R,M) to its image ϕ(1) ∈M on the unit.

We now take a closer look at Example 1.1.9 (1). For every abelian group (M,+) the group
endomorphisms End(M) form a ring, the endomorphism ring. The addition in this ring is
defined pointwise,

(ϕ+ ψ)(m) = ϕ(m) + ψ(m) .

The multiplication in the endomorphism ring is the composition of maps, ϕψ := ϕ ◦ ψ, with
unit given by the identity on M . Many endomorphism rings are non-commutative.

Lemma 1.1.10 Let M be an abelian group and R a ring.

1. If ϕ : R→ End(M) is a ring homomorphism, then

r.m := ϕ(r) .m

equips M with the structure of a (left) R-module.
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2. If M is even an R-module, then the map

ϕ : R → Maps (M,M)
r 7→ ϕ(r) with ϕ(r)m = rm

defines a ring homomorphism with values in End(M). It is called the structure map of
the module M .

For a given abelian group M , there exists by Examples 1.1.2.6 a unique (unital) ring homo-
morphism Z→ End(M), so an abelian group carries a unique Z-module structure, namely the
one from Examples 1.1.9.1.

Other important examples of rings are polynomial rings and power series rings. We recall:

Definition 1.1.11 Let R be a commutative ring with unit. A pair (A,X), consisting of a
unital R-algebra A and an element X ∈ A is called a polynomial ring (or, more accurately:
polynomial algebra) in the indeterminate X over R, if every element f ∈ A can be written
uniquely in the form

f = r0X
0 + r1X

1 + . . .+ rnX
n

with r0, r1, . . . , rn ∈ R. Here we set X0 = 1 ∈ A and interpret uniqueness as follows: if we have
an equality

r0 + r1X
1 + . . .+ rnX

n = b0 + b1X
1 + . . .+ bmX

m

in A with m ≥ n, then ri = bi for 0 ≤ i ≤ n and bi = 0 for i > n.
Note that polynomial algebras are always commutative. Their elements are called

polynomials.

A polynomial algebra over R is thus a pair, consisting of an R-algebra and an element in
this algebra, called the “indeterminate”.

Theorem 1.1.12 [Universal propery of the polynomial algebra] Let A be a polynomial ring
in the indeterminate X over R. For every R-algebra S and every choice of element s ∈ S there
exists a unique homomorphism of R-algebras ϕs : A→ S such that ϕs(X) = s.

(Just like for algebras over a field, a morphism of algebras over R is an R-linear map that
intertwines the ring multiplications.)

Proof. • Uniqueness: Since every element f ∈ A admits a unique expression

f =
n∑
i=0

riX
i

the value of ϕs on f is determined as:

ϕs(f) =
n∑
i=0

riϕs(X)i =
n∑
i=0

ris
i (∗)

• Existence: we may define ϕs using (∗). Well-definedness is a consequence of the uniqueness
of the presentation of f . Clearly we have ϕs(X) = s and a straightforward check shows
that ϕs is indeed a morphism of R-algebras.

Remarks 1.1.13
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1. Because of (∗), the map ϕs is called the evaluation homomorphism associated to s ∈ S.
For a polynomial f ∈ A we also use the notation

f(s) := ϕs(f) ∈ S .

2. In the special case of the polynomial ring, (S, s) = (A,X), the map ϕX is the identity
and our convention above is compatible with the familiar notation

f(X) := ϕX(f) = f .

3. For S = R we get for every λ ∈ R

ϕλ(f) = f(λ) ∈ R .

A polynomial thus defines a function R → R and this assignment constitutes a ring
homomorphism

A → Abb(R,R) ,

f 7→ f̃ .

In general this does not have to be injective, i.e. a polynomial cannot be identified with
its induced polynomial function:
for example, over the field R = F2 there are only 4 distinct functions R→ R, but infinitely
many distinct polynomials. We only see them by evaluating polynomials on more general
R-algebras.

4. Any two polynomial rings A,A′ over R in indeterminates X resp. X ′ are isomorphic:
By Theorem 1.1.12 there are algebra morphisms

Φ: A→ A′ and Ψ : A′ → A

with Φ(X) = X ′ and Ψ(X ′)= X .

Then
Ψ ◦ Φ : A→ A and Φ ◦Ψ : A′ → A′

are algebra morphisms satisfying

Ψ ◦ Φ(X) = X and Φ ◦Ψ(X ′) = X ′.

From the uniqueness part of Theorem 1.1.12 we deduce

Ψ ◦ Φ = idA and Φ ◦Ψ = idA′ .

Indeed, we have shown more: any two polynomial rings over the same ring R are unique
up to a unique isomorphism. This type of argument is a standard argument to show that
a mathematical object that is defined by a universal property up to unique isomorphism.

5. One also has to show that polynomial rings actually exist. An explicit construction in
terms of sequences of elements of R is typically covered in lecture courses on linear
algebra.

7



Example 1.1.14 Sometimes one also considers the commutative ring R[[X]] of formal power
series, whose elements are the power series

∑∞
i=0 riX

i with ri ∈ R. The multiplication is defined
as in the case of polynomials: note that every one of the infinitely many coefficients of the
product are expressed in terms of a finite sum. In general there is no notion of convergence
of such power series. Neither do we have general evaluation homomorphisms: a formal powers
series can typically only be evaluated at 0 ∈ R, yielding the coefficient r0 ∈ R.

Lemma 1.1.15 [Polynomial rings and endomorphisms] Let K be a field.

1. If M is a K[X]-module, then M also carries the structure of a K-vector space, by re-
stricting to the constant polynomials, i.e. by pullback along the embedding K ↪→ K[X].
The multiplication with X ∈ K[X] is a K-linear map M →M .

2. If M is a K-vector space and A : M →M a K-linear map, then the assignment

f.m := f(A)m for all m ∈M, f ∈ K[X]

with f(A) as in (1.1.13) equips the K-vector space M with the structure of a K[X]-
module.

Modules over the polynomial ring K[X] over a field are thus the same as K-vector spaces with
a K-linear endomorphism. This can be generalized by replacing K by a commutative ring.

The theory of endomorphisms of vector spaces thus reduces to the theory of modules over
a polynomial ring. This is the conceptual home of important polynomials such as the char-
acteristic polynomial and the minimal polynomial (or, more generally, invariant divisors and
determinant divisors) associated to endomorphisms.

We also see that the notion of a module over a ring provides a unified framework for the
notion of an abelian group and of a vector space with an endomorphism: both are modules over
principal ideal domains (PIDs).

Another important class of examples of rings and modules are the following.

Definition 1.1.16 Let K be a commutative ring and G a group (or, more generally, a
monoid). The group ring K[G] (or monoid ring) is defined to have as underlying abelian group
the set of all maps

f : G→ K ,

that vanish on all but finitely many g ∈ G. Elements of K[G] are can thus be expressed uniquely
as linear combinations

f =
∑

f(g)δg with f(g) ∈ K

where δg denotes the map that sends g ∈ G to 1 ∈ K and that vanishes on all other group
elements. Wherever confusion seems unlikely, we may also write g in place of δg, such that we
get expressions of the form

f =
∑

f(g)g with f(g) ∈ K .

The multiplication in the group ring is the convolution:(∑
g∈G

agg

)
?

(∑
h∈G

bhh

)
=

∑
x∈G

( ∑
g,h∈G,gh=x

agbh

)
x .

It is important to distinguish the multiplication by convolution from the pointwise multiplica-
tion, which is commutative. For the pointwise multiplication G only needs to be a set, while
the convolution uses the group multiplication in an essential way: e.g. we have δg ? δh = δgh.
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There is a ring homomorphism
K ↪→ K[G]
a 7→ aδe ,

where e denotes the neutral element of G, and a group homomorphism

G → K[G]×

g 7→ 1g ≡ 1Kδg ,

along which we may consider the underlying set of G as a basis of the group ring K[G]. This
notion of basis will be introduced in Definition 1.3.1. Group rings are thus rings equipped with
a distinguished basis. Observe that the group ring K[G] is commutative if and only if the group
G is abelian.

We will see that modules over a group ring over a field K are nothing but K-linear group
representations. We now recall this alternative language.

Definition 1.1.17 A representation of a group G over a field K is a pair (V, ρ), consisting of
a K-vector space V and a group homomorphism ρ into the invertible K-linear endomorphisms
of V ,

ρ : G→ GL(V ) := {ϕ ∈ EndK(V ), ϕ invertible } .

In typical applications the vector space V may e.g. arise as space of solutions to a linear
differential equation or as state space of a quantum-mechanical system. The action of the group
then describes the action of symmetries. One goal of the lecture is to give an overview of group
actions for given groups G on finite-dimensional vector spaces V .

Remark 1.1.18
1. Given a representation (V, ρ), we also sometimes write ρV for ρ.

2. If (V, ρ) is a representation of G over K, then the map

G× V → V

(g, v) 7→ ρ(g)v

defines an action of the group G on the underlying set of the vector space V . The group
acts by linear maps.

3. If G×V → V is an action of the group G on the set underlying a K-vector space V , such
that

g(v + w) = gv + gw g(λv) = λgv

holds for all v, w ∈ V, g ∈ G and λ ∈ K, then

ρ(g)v = g(v)

defines a representation ρ : G→ GL(V ).

In summary, a representation is an “action on a vector space by linear maps”.

4. Every vector space V carries an action by its automorphism group GL(V ), namely by
ρ = idGL(V ).

5. Every vector space V may be considered as a representation of any given group G with
the trivial action ρ(g) = idV for all g ∈ G.
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6. For a field extension L/K, the K-vector space L is a representation of the Galois group
Gal(L/K) over K.

7. A representation (V, ρ) of the group Z is equivalent to the data of an automorphism
A ∈ GL(V ), namely A = ρ(1). Then one also has ρ(n) = An.

8. Representations of Z/2Z are equivalent to the data of a vector space V with an automor-
phism A : V → V , such that A2 = idV . If the characteristic of K is not two, then V is
the direct sum of the eigenspaces of A for the eigenvalues ±1,

V = V + ⊕ V − .

This is because every vector v ∈ V can be decomposed as

v =
1

2
(v + Av) +

1

2
(v − Av) ;

which are eigenvectors of A for the eigenvalues ±1 as the following check shows:

A
1

2
(v ± Av) =

1

2
(Av ± A2v) = ±1

2
(v ± Av)

For a field of characteristic two, only the eigenvalue 1 appears. By A2 = idV the minimal
polynomial of A divides X2 − 1 = (X − 1)2. The Jordan blocks of A thus have size 1 or
2. Jordan blocks of size 2 may indeed appear:(

1 1
0 1

)(
1 1
0 1

)
=

(
1 2
0 1

)
=

(
1 0
0 1

)
.

Lemma 1.1.19 Let G be a group and K a field. There is a bijection

{ representations of G over K} ∼←→ {K[G]−modules } .

Proof. Given a K-linear G-representation (V, ρ), we can define on the underlying abelian group
(V,+) of the vector space the structure of a K[G]-module by specifying the scalar multiplication
(
∑

g∈G λgδg).v :=
∑

g∈G λgρ(g)(v) for v ∈ V and λg ∈ K. It is straightforward to check that
this indeed defines a K[G]-module.

Conversely, a K[G]-module M has an underlying abelian group, which is a K-vector space
with respect to the scalar multiplication λm := (λδe).m for m ∈ M and λ ∈ K. For g ∈ G we
then define ρ(g) ∈ EndK(V ) by ρ(g)(v) := δg.v for v ∈M . This defines a G-representation over
K and the two assignments constructed here are manifestly mutually inverse to each other.

More generally, for a monoid G a Z[G]-module is equivalent to the data of an abelian group
with a G-action by group homomorphisms. We leave this as an exercise to the reader.

The module homomorphisms of modules over the group ring K[G] are also studied under a
different name in the language of representations.

Definition 1.1.20 Given representations V,W of a group G over the same field K, a
morphism of representations or intertwiner is a K-linear map f : V → W , satisfying

f(ρV (g)v) = ρW (g)f(v) for all g ∈ G .

An isomorphism is a bijective morphism. Two representations are called isomorphic, if an
isomorphism exists between them.
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One checks that the inverse of an intertwiner is itself an intertwiner.
We continue in the theory of modules:

Definition 1.1.21 Let M be an R-left module and U ⊆ M a subgroup. Then U is called a
submodule of M , if U is closed under the scalar multiplication on M , i.e. if m ∈ U and r ∈ R
implies r.m ∈ U .

Remark 1.1.22

1. The subgroups of an abelian group are precisely the Z-submodules.

2. Considering the ring R as a module over itself, the R-submodules of R are exactly the ide-
als of R. More precisely, the R-left-submodules are the left ideals, the right R-submodules
are the right ideals and the R-bi-submodules are the two-sided ideals.

3. A subset W ⊂ V of a representation V is called a subrepresentation if it is vector subspace
that is stable under G; i.e. if g ∈ G and w ∈ W imply gw ∈ W . Under the bijection from
Lemma 1.1.19 the subrepresentation correspond to the K[G]-submodules.

4. The image and the preimage of a submodule under a module homomorphism are again
submodules. In particular, the image and the kernel of a module homomorphism are
submodules.

5. If U is a submodule of M , then on the level of underlying abelian groups, U is normal in
M and M/U is again an abelian group.

The quotient group M/U inherits the structure of an R-module, called the
quotient module or factor module of M by U , with the scalar multiplication:

R×M/U → M/U

(α, x+ U) 7→ αx+ U

In verifying this, it is important to check that the scalar multiplication is well-defined.

6. We illustrate this in an example: Let a be a left ideal of R and M an R-module, then

aM =

{∑
finite

αixi

∣∣∣ αi ∈ a, xi ∈M

}

is a submodule of M : for r ∈ R,α ∈ a and x ∈ M we have rα ∈ a since a is a left ideal,
and thus r(αm) = (rα)m ∈ aM . By remark (5) the quotient M/aM is an R-module.

If a is actually a two-sided ideal, then R/a is a ring with respect to the multiplication
(a+ a) · (a′ + a) := a · a′ + a. Then the scalar multiplication

(α + a)(x+ aM) = αx+ aM

is well-defined and thus the R-module structure on M/aM descends to an R/a-module
structure.

We consider a concrete example: the ring Z of integers is a module over itself, i.e. a Z-
module; nZ is a two-sided ideal for every n ∈ Z and the cyclic group Z/nZ is a Z-module
with scalar multiplication

n.m = nm

and also a Z/nZ-module with n.m = nm.

11



Lemma 1.1.23 [restriction of scalars/pullback] If ϕ : R→ S is a ring homomorphism, then
every S-module (M,µ) (in particular S itself) becomes an R-module via µ ◦ (ϕ× idM), i.e. by
setting

r.m := ϕ(r).m .

This operation is called restriction of scalars, even when R is not a subring of S, i.e. ϕ need
not be injective. The resulting R-module is also called the pullback of the S-module M along
the ring homomorphism ϕ.

In other words: the S-module structure on M can be expressed as a ring homomorphism
S → End(M) and the R-module structure of the pullback is then expressed by the composite
ring homomorphism

R
ϕ→ S → End(M).

For example, let a ⊂ R be a two-sided ideal of R and can: R→ R/a, the canonical surjection,
then the quotient ring R/a is a module over itself and by pullback also naturally an R-module.

Example 1.1.24 Restriction of scalars provides an alternative explanation of why the quo-
tient ring Z/nZ of the ring of integers is a module over the ring of integers.

Definition 1.1.25

1. Let A ⊆M be a subset of an R-module M . Then

〈A〉 =

{∑
finite

αiai

∣∣∣ αi ∈ R, ai ∈ A}

denotes the submodule of M generated by A. We have

〈A〉 =
⋂

U⊂M submodule
A⊆U

U

i.e. 〈A〉 is the smallest submodule of M that contains A.

To see this, note that 〈A〉 is a submodule containing A and thus one of the modules being
intersected, and thus contained in the intersection. Conversely, every submodule being
intersected must also contain the elements of 〈A〉.

2. If 〈A〉 = M , then the set A is called a generating set of the module M . M is called
finitely generated, if a finite generating set exists.

3. A module is called a cyclic module, if it admits a generating set consisting of a single
element.

Note that not every element of a cyclic module needs to be a generator. We leave it as an
exercise to check that the cyclic groups are exactly the cyclic Z-modules.

Theorem 1.1.26 (Homomorphism theorems for modules)

1. Let M,N be R-modules and f : M → N a module homomorphism, then there exists a
canonical isomorphism

M/ ker f
∼−→ f(M)

x+ ker f 7→ f(x)
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2. If U and V are submodules of a module M , then

(U + V )/V
∼−→ U/(U ∩ V )

with U + V = {u+ v, u ∈ U and v ∈ V }. To see this, check that the map

U + V → U/ U ∩ V
u+ v 7→ u+ (U ∩ V )

is well-defined compute its kernel.

3. For every chain U ⊆ V ⊆M of submodules, V/U is a submodule of M/U and

(M/U) / (V/U)
∼−→ M/V .

The proof of this theorem is completely analogous to that in the case of vector spaces.

Definition 1.1.27
1. Let U be a subset of an R-module M . Then

Ann (U) = {α ∈ R | αu = 0 for all u ∈ U}

is called the annihilator of the subset U . In the case of a left module, this is a left ideal
of R. The annihilator of an element x ∈M is denoted by

Ann(x) = {α ∈ R |αx = 0} .

By Theorem 1.1.26 (1) there is an isomorphism of left modules

R/Ann(x)
∼−→ Rx

α 7→ αx .

If U is a submodule, then the annihilator is even a two-sided ideal.

2. A module M is called faithful, if Ann M = (0). We remark that a representation on a
K-vector space V is faithful if the group homomorphism ρ : G→ GL(V ) is injective. If V
is faithful as K[G]-module then the corresponding representation is also faithful. Suppose
ρ(g) = ρ(g′) for g 6= g′, then g−g′ would be contained in the annihilator of V . The converse
is not true, however: the one-dimensional representation of the cyclic group Z/2Z = {e, g}
with ρ(g) = −1 is faithful as group representation, but the associated K[G]-module is
not faithful, since the element e+ g ∈ K[G] is contained in the annihilator.

3. An element x ∈ M is called a torsion element, if Ann (x) 6= 0. We denote the set of all
torsion elements in M by Tor M ; in general it is not a submodule.

4. A module M is called torsion-free, if Tor M = (0).

In a torsion-free module the annihilators of all nonzero elements are zero, in particular
Ann(M) = (0), and so torsion-free modules are automatically faithful. The converse is false:
for example the ring R = Z/6Z is faithful as module over itself (because it is unital). But the
element 2 is contained in the annihilator of 3, and so 3 is a torsion element.

Example 1.1.28 The ring of integers Z is torsion-free over itself; the Z-module Z/nZ consists
exclusively of torsion elements.
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A commutative ring R is called integral or an integral domain if it has no zero divisors, i.e.
if for α, β ∈ R the equation α · β = 0 implies α = 0 or β = 0.

Theorem 1.1.29 If M is a module over an integral domain R, then Tor M is a submodule
of M and the quotient module M/Tor M is a torsion-free R-module.

Proof. • If x ∈ Tor(M) is a torsion element, β ∈ R, then we can find a nonzero α ∈ Ann (x).
Then α(βx) = (αβ)x = β(αx) = 0 and thus βx ∈ Tor M .

• Given two torsion elements x, y ∈ Tor M , we can find α, α′ ∈ R \ {0}, such that
αx = α′y = 0. Then αα′ 6= 0 since R is integral by assumption, and we have αα′(x+ y) =
0 + 0 = 0, which implies x+ y ∈ Tor M . Thus Tor(M) is a submodule.

• Finally let x+ Tor M ∈ M/Tor M be a torsion element. We find α ∈ R\{0}, such that
α(x + Tor M) = 0. Since αx ∈ Tor M there exists a β ∈ R \ {0} with βαx = 0. As
R is integral, we have βα 6= 0 and hence x ∈ Tor M . Thus the quotient M/Tor M is
torsion-free.

1.2 Operations on modules, the tensor product

Definition 1.2.1 Let (Mλ)λ∈Λ be a family of modules over a ring R. We form two new
R-modules:
the product ∏

λ∈Λ

Mλ = {(mλ)λ∈Λ

∣∣ mλ ∈Mλ}

and the direct sum⊕
λ∈Λ

Mλ = {(mλ)λ∈Λ

∣∣ mλ ∈Mλ, only finitely many mλ are nonzero} .

The R-module structures on these sets are given by the componentwise addition and compo-
nentwise scalar multiplication with scalars from R.

Remarks 1.2.2

1. For every natural number n we have the R-module Rn = R⊕ . . .⊕R︸ ︷︷ ︸
n− times

.

2. For finite families, |Λ| <∞, the notions of direct sum and product coincide. We then do
not distinguish between

∏s
i=1 Mi = M1 ×M2 × . . .×Ms and M1 ⊕ M2 ⊕ . . .⊕Ms.

3. Both notions can be characterized by universal properties. For this we consider the canon-
ical

injection bzw. surjection

iλ : Mλ ↪→
⊕
µ∈Λ

Mµ prλ :
∏
µ∈Λ

Mµ �Mλ
.

Here ιλ maps the element m ∈ Mλ to the element of the direct sum, whose entries are
all zero except for the component λ. The map prλ projects onto the component λ. Both
maps are homomorphisms of R-modules.
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The two universal properties are: if M is an arbitrary R-module, then the two maps

HomR(⊕µ∈ΛMµ,M) −→
∏
µ∈Λ

HomR(Mµ,M)

f 7→ (f ◦ iµ)µ∈Λ

HomR

(
M,

∏
µ∈Λ

Mµ

)
−→

∏
µ∈Λ

HomR(M,Mµ)

f 7→ (prµ ◦ f)µ∈Λ

are isomorphisms of abelian groups.

In other words: A family of maps from some modules into one module M can be described
uniquely by a single map from the direct sum of the modules into M . In the case of the
direct product a family of maps out of one module M into some modules can be described
uniquely as a single map out of M into the direct product.

The direct sum and the product should not be considered as just a module (with some
properties), but as a module with this properties together with a family of injections resp.
surjections. This module with its family of morphisms is determined by the corresponding
universal property up to unique isomorphism.

4. Given a family (Uλ)λ∈Λ of submodules of a module M , then the submodule of M generated
by their union ∑

λ∈Λ

Uλ := 〈 ∪λ∈ΛUλ 〉

is called the (inner) sum of the family.

Every submodule is equipped with an injection sλ : Uλ → M ; by the universal property
of the direct sum we may collect this family of morphisms into a natural morphism

s : ⊕λ∈ΛUλ →M

The sum
∑

λ∈Λ Uλ is the image of the morphism s. If s is injective, then we say the sum
of submodules is direct and sometimes write ⊕λ∈ΛUλ instead of

∑
λ∈Λ Uλ, which we may

call an inner direct sum. The injectivity of s means that we can write every element of
the inner direct sum in a unique way as a sum of elements of the submodules Uλ.

5. Given two representations (V, ρV ) and (W, ρW ) of a group G over a field K then
their direct sum is defines as the K-vector space V ⊕ W with the action g(v, w) =
(ρV (g)v, ρW (g)w). Analogously one defines direct sums and products of infinitely many
representations, corresponding to the parallel notions for modules over the group ring
K[G].

We will also need the notion of the tensor product, which may be familiar from linear algebra
in the case of vector spaces.

Definition 1.2.3 LetM be an Ropp-module andN an R-module. The tensor productM⊗RN
is defined as the abelian group generated by pairs m⊗ n with m ∈M and n ∈ N , modulo the
relations

0⊗ n = m⊗ 0 = 0 for all m,n
(m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n for all m1,m2, n
m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2 for all m,n1, n2

(m.r)⊗ n = m⊗ (r.n) for all m ∈M,n ∈ N, r ∈ R
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Remarks 1.2.4

1. Note that M is required to be a right module, so that the final relation is consistent with
the relations defining the module structures: indeed we must have

m.(r1r2)⊗ n = (m.r1).r2 ⊗ n = m.r1 ⊗ r2.n = m⊗ r1.(r2.n) = m⊗ (r1 · r2).n .

2. A typical element of M ⊗R N is not of the form m ⊗ n with m ∈ M and n ∈ N ; such
special elements are called elementary tensors. A typical element is actually a sum of
elementary tensors, i.e.

∑
imi ⊗ ni with mi ∈M and ni ∈ N .

Lemma 1.2.5 Let R be a ring and suppose M,Mi are Ropp-modules and N an R-module.
Then there are distinguished isomorphisms:

1. Let 0 be the zero module. Then we have: 0⊗R N ∼= M ⊗R 0 ∼= 0.

2. R⊗R N ∼= N and M ⊗R R ∼= M as abelian groups.

3. ⊕λ∈Λ (Mλ ⊗R N) ∼= (⊕λ∈ΛMλ)⊗R N and analogously in the second argument.

4. Let S be another ring, Q an S-module and P an R-S-bimodule. Then M⊗RP is naturally
an Sopp-module and P ⊗SQ an R-module and we have an isomorphism of abelian groups:

(M ⊗R P )⊗S Q ∼= M ⊗R (P ⊗S Q) .

Proof. The first identity follows directly from the first defining relation of the tensor product.
For the second identity consider the morphism of abelian groups

M → M ⊗R R
m 7→ m⊗ 1 ,

which has the inverse
M ⊗R R → M
m⊗ r 7→ m.r

and is thus an isomorphism of abelian groups.
The distributivity for direct sums can be seen as follows: by the universal property of the

direct sum a morphism

Φ: ⊕λ∈Λ (Mλ ⊗R N)→ (⊕λ∈ΛMλ)⊗R N

is determined by its restrictions to Mλ⊗N for all λ ∈ Λ. There we set on generators Φ(mλ⊗n) =
ιλ(mλ)⊗n. To specify the inverse map we note that in (⊕λ∈ΛMλ)⊗RN every element is of the
form x =

∑
λ ιλ(mλ)⊗ nλ. The inverse map Ψ is now given by Ψ(ιλ(mλ)⊗ nλ) = ιλ(mλ ⊗ nλ).

The Sopp-module structure on M ⊗R P is defined by (m ⊗ p).s = m ⊗ p.s. The R-module
structure on P ⊗S Q is defined analogously. The isomorphism is defined on generators by

(m⊗ p)⊗ s 7→ m⊗ (p⊗ s) .

Examples 1.2.6
1. Let R be a ring and Rn := R⊕R⊕ . . .⊕R the n-fold direct sum of R. Then

Rm ⊗R Rn ∼= Rmn .

This is a consequence of the distributivity law 1.2.5.3.
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2. If R is a commutative ring, then the polynomial rings satisfy

R[X]⊗R R[Y ] ∼= R[X, Y ]

where R[X, Y ] is the ring of polynomials in two variables, considered here at first as an
abelian group. (Exercise)

3. Let Zn := Z/nZ be the Z-module of integers modulo n which we may also consider
bimodule as over Z. Then

Zn ⊗Z Zm ∼= Zg
where g is the greatest common divisor of m and n.

To see this note that every element in the tensor product can be written as finite sum

x = a1 ⊗ b1 + . . .+ ak ⊗ bk

with ai, bi ∈ Z. By Z-bilinearity of the tensor product we have

x = (a1b1 + . . .+ akbk) (1Z/nZ ⊗ 1Z/mZ) ;

and so the tensor product is also a cyclic group. The group homomorphism

Φ: Zn ⊗Z Zm → Zg
k ⊗ l 7→ k · l

is well-defined as g = gcd(m,n) divides n and m, and clearly surjective. If Φ(a(1⊗1)) = 0,
then a is a multiple of the gcd g. Bézout’s lemma yields α, β ∈ Z such that αn+βm = a.
Thus we have

a(1⊗ 1) = α(n⊗ 1) + β(1⊗m) = 0

in Zn ⊗Z Zm, and so Φ is also injective.

4. Tensoring with Q over Z kills the torsion elements of abelian groups. Indeed, Zn ⊗Z Q is
zero for every n ∈ Z>0 since for all i ∈ Z and q ∈ Q

[i]⊗ q = [(in)]⊗ q

n
= [0]⊗ q

n
= 0 .

If, conversely, an element of an abelian group is not torsion, then it generates a subgroup
isomorphic to Z. Since tensoring with Q sends subgroups to subgroups (proof later in
Example 1.4.12) and Z ⊗Z Q ∼= Q by Lemma 1.2.5.2, such an element does not vanish
upon tensoring with Q.

5. The tensor product is not distributive with respect to infinite direct products: Let M :=∏
n≥1 Zn. One the one hand, by (4) Zn⊗ZQ = 0 and so

∏
n≥1(Zn⊗ZQ) = 0. On the other

hand, let e ∈ M denote the element, with entry 1 in every component. Then e ⊗ 1 6= 0,
since e has infinite order in the abelian group M , i.e. generates a subgroup isomorphic
to Z. Then by Lemma 1.2.5.2 we have Z⊗Z Q ∼= Q. Thus the tensor product M ⊗Z Q is
nonzero.

If R is a commutative ring, then one can define the tensor product of two (left) R-modules
M,N , by first considering N via m.r := r.m as an R-right module and in fact even a bimodule.
rIn this case the tensor product carries not only the structure of an abelian group, but that of
an R-module:
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Theorem 1.2.7 If R is a commutative ring and M,N are two R-modules, then

µ(r,m⊗ n) := (r.m)⊗ n = m⊗ r.n

defines an R-module structure on M ⊗R N .
In this case, for three R-modules M,N,P one has canonical isomorphisms

aM.N.P : M ⊗ (N ⊗ P ) → (M ⊗N)⊗ P
m⊗ (n⊗ p) 7→ (m⊗ n)⊗ p

along which the R-modules M ⊗ (N ⊗P ) and (M ⊗N)⊗P can be identified. In this sense the
tensor product is associative.

The proof is left to the reader. Also note the formal similarity to the Hom between modules,
which yields abelian groups over general rings, but R-modules in the case of a commutative
ring.

We now discuss the universal property of the tensor product. As in the case of vector spaces,
it involves bilinear maps.

Definition 1.2.8 Let R be a ring, M an Ropp-module, N an R-module, and T an abelian
group. A map f : M ×N → T is called R-bilinear, if it satisfies the following properties:

f(m, 0) = f(0, n) = 0 for all m ∈M,n ∈ N
f(m1 +m2, n) = f(m1, n) + f(m2, n) for all m1,m2 ∈M,n ∈ N
f(m,n1 + n2) = f(m,n1) + f(m,n2) for all m ∈M,n1, n2 ∈ N

f(m.r, n) = f(m, r.n) for all m ∈M,n ∈ N, r ∈ R

We denote by BilR(M,N, T ) the abelian group of such maps.

The map
M ×N → M ⊗R N

(m,n) 7→ m⊗ n
is R-bilinear by definition.

Theorem 1.2.9 [Universal property of the tensor product] Let R be a ring, M an Ropp-
module, N an R-module, and T an abelian group.

1. The R-bilinear map
⊗ : M ×N → M ⊗N

(m,n) 7→ m⊗ n
induces an isomorphism of abelian groups

HomZ(M ⊗R N, T ) → BilR(M,N, T )

φ̃ 7→ φ̃ ◦ ⊗ .

In other words, every R-bilinear map φ : M × N → T can be described uniquely by a
morphism of abelian groups φ̃ : M ⊗R N → T . As commutative diagram:

M ×N ⊗ //

φ
&&

M ⊗R N
∃!φ̃
��
T
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2. The abelian group HomZ(N, T ) carries a natural Ropp-module structure defined by
(f.r)(n) := f(r.n) for f : N → T , r ∈ R, and n ∈ N . Indeed

f.(r1 · r2)(n) = f((r1 · r2).n) = f(r1.(r2.n)) = (f.r1)(r2.n) = ((f.r1).r2))(n)

for all n ∈ N .

Analogously the abelian group HomZ(M,T ) carries a natural R-left module structure
defined by (r.g)(m) := g(m.r) for g : M → T , r ∈ R, and m ∈M .

With respect to these R-module structures we have the isomorphisms of abelian groups

HomR(N,HomZ(M,T )) ∼= HomZ(M ⊗R N, T ) ∼= HomRopp(M,HomZ(N, T )) .

Proof. The first part follows directly from the definition of the tensor product. The second part
requires a straightforward calculation. The final statement follows from the observation that
all three spaces describe R-bilinear maps M ×N → T . (Exercise).

Remark 1.2.10 The universal property of the tensor product implies the following unique-
ness statement. Let T be an abelian group and τ : M × N → T an R-bilinear map, such that
every bilinear map φ : M × N → T ′ can be expressed as a homomorphism of abelian groups
Φτ : T → T ′ precomposed with τ :

M ×N τ //

φ $$

T

∃!φτ
��
T ′

Then we claim that T is already isomorphic to M ⊗ N with τ playing the role of ⊗. To see
this, we consider the above diagram for φ = ⊗, as well as the diagram obtained by switching
the roles of τ and ⊗. Composing the two diagrams we get the commutative diagram:

T

∃!Ψ1

��
M ×N ⊗ //

τ

88

τ
&&

M ⊗R N
∃!Ψ2

��
T

The vertical map T → T on the right is the unique Φτ for Φ = τ from the universal property
of (T, τ); it must be the identity and so Ψ2 ◦Ψ1 = idT . By exchanging the roles of ⊗ and τ in
the argument, one gets Ψ1 ◦Ψ2 = idM⊗RN , and so Ψ1 and Ψ2 are isomorphisms that intertwine
⊗ and τ .

An important application of the universal property of the tensor product is the definition
of the tensor product of morphisms of modules.

Observation 1.2.11 Let R be a ring and let Φ: M → M ′ be a morphism of Ropp-modules
and Ψ: N → N ′ a morphism of R-modules.

We consider the following diagram:

M ×N ⊗
//

Φ×Ψ
��

M ⊗R N
∃! Φ⊗Ψ
��

M ′ ×N ′ ⊗
// M ′ ⊗R N ′
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Since the map ⊗◦ (Φ×Ψ) is clearly R-bilinear, the universal property of the tensor product
guarantees the existence of a unique homomorphism of abelian groups Φ ⊗ Ψ making the
diagram commute, i.e.

(Φ⊗Ψ)(m⊗ n) = Φ(m)⊗Ψ(n) .

By bilinearity of ⊗, the tensor product of morphisms is also Z-bilinear:

(Φ1 + Φ2)⊗Ψ = Φ1 ⊗Ψ + Φ2 ⊗Ψ
Φ⊗ (Ψ1 + Ψ2) = Φ⊗Ψ1 + Φ⊗Ψ2

Remarks 1.2.12

1. If R, S are unital rings then, in particular, they are abelian groups, i.e. Z-modules. The
tensor product over Z thus defines an abelian group R ⊗Z S. Another, distinct abelian
group is the Cartesian product R× S. We equip both groups with unital ring structures:

on R× S (r, s)(r′, s′) := (rr′, ss′)
on R⊗Z S (r ⊗ s)(r′ ⊗ s′) := (rr′)⊗ (ss′) .

2. If M is an R-module and N an S-module, then M × N becomes an R × S-module via
(r, s).(m,n) := (r.m, s.n) and M ⊗Z N becomes an R ⊗Z S-module by r ⊗ s.m ⊗ n :=
r.m⊗ s.n.

3. Similarly one can define the product of infinitely many rings. Question: Why is the infinite
direct sum of unital ring not a unital ring anymore?

4. The universal properties of this construction is as follows:
The product

∏
λ∈Λ Rλ of an arbitrary family of rings together with the usual projections

prλ :
∏
µ∈Λ

Rµ → Rλ

satisfies the universal property of a product: for every ring S we have an isomorphism of
sets

Hom(S,
∏

λ∈ΛRλ) →
∏

λ∈Λ Hom(S,Rλ)
f 7→ (prµ ◦ f)µ∈Λ .

5. If R1 and R2 are commutative rings, then the tensor product R1⊗ZR2 together with the
maps

ι1 : R1 → R1 ⊗Z R2 ι2 : R2 → R1 ⊗Z R2

r1 7→ r1 ⊗ 1 r2 7→ 1⊗ r2

satisfies a universal property of the same typ as the direct sum of modules: for every
commutative ring S the map

Hom(R1 ⊗Z R2, S) → Hom(R1, S)× Hom(R2, S)
f 7→ (f ◦ ι1, f ◦ ι2)

is an isomorphism of sets. One says that the tensor product is a coproduct for commutative
unital rings. Both properties will be discussed in the exercises.
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1.3 Free modules

Definition 1.3.1
1. A family (mλ)λ∈Λ of elements of an R-module is called linearly independent or free, if the

following condition is satisfied: whenever∑
λ∈Λ

rλmλ = 0 ,

for a family (rλ)λ∈Λ of elements in R, in which only finitely many members are nonzero,
then one must have rλ = 0 for all λ ∈ Λ.

2. A (not necessarily finite) subset S ⊂ M is called basis of the module M , if S is linearly
independent and S is a generating set of M , 〈S〉 = M .

3. A module is called free, if it has a basis.

Obviously, any subfamily of a free family is again free. Note that here we are explicitly
considering a module along with its underlying set.

Remark 1.3.2

1. If R is a field and M an R-vector space, then M is free over R because every vector
space has a basis. There are, however, rings which admit non-free modules: let R = Z
and M = Z/2Z. Since 2 · 1 = 0 we see that {1} is not linearly independent for any subset
of M containing 1. On the other hand, {0} is not a generating set since n.0 = 0 for all
n ∈ Z. So there is no basis.

2. Similarly Z/5Z is not a free Z-module, but it is a free Z/5Z-module. In general, the left
regular module RR is free with basis (1R); the same applies to the right regular module.

3. For every set Λ the module

RΛ := {f : Λ→ R | f(λ) = 0 for almost all λ ∈ Λ}

is free. The indicator functions taking value 1 at some element of Λ and 0 elsewhere form
a distinguished basis, that we identify with Λ. In this way we may consider Λ as a subset
of RΛ.

We call RΛ the free R-module generated by Λ. Conversely, our definitions imply that a
family (mλ)λ∈Λ in an R-module module is a basis if and only if the map RΛ→M sending
(rλ) 7→

∑
rλmλ is an isomorphism of R-modules.

4. An R-module M is free over a subset S ⊂M if and only if

M ∼=
⊕
s∈S

Rs .

In this case S is a basis of the module. Also note Rs ∼= R as R-modules for all s ∈ S.

Proof. Let (s)s∈S be a basis. The inclusions of submodules Rs→M define a morphism⊕
s∈S Rs −→ M
(rs)s∈S 7→

∑
rs.s

of R-modules by the universal property of the direct sum from Remarks 1.2.2.3. This is
surjective since 〈S〉 = M and injective since S is linearly independent. The converse is
immediate.
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5. If M is free and finitely generated, then there exists an n ∈ N such that

M ∼= Rn = R⊕ . . .⊕R︸ ︷︷ ︸
n−times

Suppose that M = 〈x1, . . . , xm〉, i.e. that {x1, . . . , xm} is a finite generating set, and S a
basis. Then each of the finitely many generators xi can be uniquely written as

xi =
∑
finite

αijsj with αij ∈ R, sj ∈ S .

Thus there is a finite subset of S, which generates M and is still free as a subset of a free
set.

6. Given finitely many modules M1, . . . ,Mm and N1, . . . Nn over a ring R, then the universal
property of the direct sum resp. the direct product imply the natural identification

HomR(M1 ⊕ · · · ⊕Mm, N1 ⊕ · · · ⊕Nn)
∼→

m∏
i=1

HomR(Mi,

n∏
j=1

Nj)
∼→
∏
i,j

HomR(Mi, Nj) .

Writing the elements of the direct sum M1 ⊕ · · · ⊕ Mm as column vectors, where the
entry of the ith row lives in Mi, then every homomorphism between the direct sums
can be described as a matrix, whose entries are homomorphisms in HomR(Mi, Nj). The
composition of homomorphisms between the direct sums is then described by the familiar
matrix multiplication.

Finitely generated free modules can be decomposed into copies of R as in (5), and mor-
phisms between them are thus modelled by matrices with entries in HomR(R,R) ∼= R.
The latter isomorphism is given by φ 7→ φ(1) with inverse R 3 r 7→ (φ(s) := sr), cf.
Examples 1.1.9.

Theorem 1.3.3 If R is a non-zero commutative ring with 1 and M a free R-module, then
any two bases of M have the same cardinality. This cardinality is called the rank of the module
M . It can be, but need not be, finite. In case of finite rank

rankRM = n ⇐⇒ M ∼= Rn .

Proof. Let m be a maximal ideal in R which exists by Zorn’s lemma, see appendix. As R is
commutative, the quotient K := R/m is a field, and by Remark 1.1.22.5 the quotient M/mM
is a vector space over K.

Let S be a basis of the free module M , i.e. M ∼=
⊕
s∈S

Rs. Then mM ∼=
⊕
s∈S

ms, and for the

quotient we get

M/mM ∼=
⊕
s∈S

Ks.

Thus we have dimK(M/mM) = |S| and the assertion follows from the linear algebra fact that
all bases of a given K-vector space have the same cardinality.

Remark 1.3.4 For arbitrary rings R an isomorphism Rn ∼= Rm as R-left modules does
not generally imply n = m. The simplest counterexample is the null ring (it is also the only
commutative counterexample).

Here is a more interesting counterexample over a non-commutative ring R. Let K be a field
and V the free K-vector space over the set N of natural numbers. Every isomorphism of sets
N → N × N induces an isomorphism of vector spaces V

∼→ V ⊕ V . Let R := EndK(V ). Then
we get an isomorphism of R-modules

R = EndK(V )
∼→ HomK(V ⊕ V, V ) ∼= R⊕R .
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The next results concerns a relationship between free modules and arbitrary modules.

Theorem 1.3.5 Let R be a unital ring. Every R-module M is a homomorphic image of a
free R-module.

Proof. We define a (very large) free module with basis M :

F :=
⊕
m∈M

Rm with Rm
∼= R for all m ∈M .

The map

F → M

(αm)m∈M 7→
∑
m∈M

αmm

is a surjective R-module homomorphism since R is unital.

For the Z-module Z/5Z the proof constructs a surjective homomorphism Z5 → Z/5Z.
However, the usual quotient morphism Z → Z/5Z sending l 7→ l mod 5 would already be
sufficient to show the statement in Theorem 1.3.5

Theorem 1.3.6 Let F and M be R-modules with F free. Let f : M � F be a surjective
homomorphism. Then there exists an R-module homomorphism

g : F →M

such that f ◦ g = idF , and we have M ∼= ker f ⊕ Im g. One says that g splits the epimorphism
f .

We remark that the module homomorphism g is typically not uniquely determined — al-
ready in the case of vector spaces choices of complement are not unique. The surjective Z-module
morphism Z → Z5 does not split: the only morphism Z5 → Z is the zero morphism, since the
abelian group Z does not contain elements of order 5.

Proof. • Let S be a basis of F . Choose a preimage ms ∈ f−1(s) ⊂ M for every s ∈ S and
define

g : F →M

by s 7→ ms on the basis vectors s ∈ S, i.e.∑
s∈S

αss 7→
∑
s∈S

αsms αs ∈ R.

This is a well-defined R-module homomorphism since the representation of elements of F
in terms of linear combinations of the s ∈ S is unique, because F is free. Then we have

f ◦ g(s) = f(ms) = s for all s ∈ S

and so f ◦ g = idF .

• Now we use g to decompose every x ∈M as follows:

x = gf(x) + (x− gf(x)) .
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Clearly gf(x) ∈ Im g, and furthermore

f(x− gf(x)) = f(x)− f(x) = 0 .

Thus we have written M as sum of submodules, M = ker f + Im g. This sum is direct: If
x ∈ ker f ∩ Im g, then x = g(y) for a y ∈ F and 0 = f(x) = fg(y) = y, and so y = 0,
which implies x = 0.

Corollary 1.3.7 If N is a submodule of M , such that the quotient module M/N is free,
then there exists a submodule N ′ of M , such that

M = N ⊕N ′ and N ′ ∼= M/N.

In other words, the submodule N has a complement N ′ in M .

Proof. Applying Theorem 1.3.6 to the canonical surjection M � N , we find a morphism
g : M/N →M and a direct sum decomposition M = ker f ⊕ Im g. The kernel of the canonical
surjection is N . Since g has a left inverse, g is injective, and we can identify Im g ∼= M/N =: N ′.

The Z-submodule 5Z ⊂ Z is an example of a submodule for which there is no complement.
One might be tempted to think that free modules can be characterized by the property

expressed in Theorem 1.3.6. However, there are modules that satisfy this property without
being free. Instead the property from Theorem 1.3.6 is characterizing for the class of projective
modules, the subject of the next subsection. Their importance stems from the fact that their
characterizing property can be formulated purely in terms of morphisms: it is “categorical”.
The correct universal property that characterizes free modules will be discussed in the exercises.

1.4 Projective, flat, divisible and injective modules

Can we hope to describe arbitrary modules by free modules? We know from Remark 1.3.2 that
the Z-module Z/2Z is not free. But it is a quotient of the free module Z under π : Z → Z/2Z
with l 7→ l. The kernel of π is the submodule 2Z ⊂ Z, itself another free module. So, Z/2Z can
be described as a quotient of free modules. Actually we need a more general framework:

Definition 1.4.1 Let R be a ring. We consider sequences of R-modules and module homo-
morphisms:

. . .
f1→M1

f0→M0
f−1→ M−1 . . .

Such a sequence is called an R-chain complex if fi ◦fi+1 = 0 holds for all i. A sequence is called
exact, if ker(fi) = Im (fi+1) holds for all i.

Remarks 1.4.2

1. The condition on consecutive maps in a chain complex can also be expressed as Im (fi+1) ⊆
ker(fi).

2. Analogously one can define finite or half-infinite sequences define; exactness is only called
for, where it makes sense. For example, every 2-step sequence M → N is exact, since it
contains no conditions.

3. The morphisms fn in a chain complex (Mn, fn) are usually collectively called the
differential and one uses the letter d for it. The notation for the chain complex is of-
ten abbreviated M•, where the black dot indicates that one is working with a Z-graded
chain complex.
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4. Of special interest in homological algebra are the short exact sequences. These are of the
form

0→M ′ ι→M
p→M ′′ → 0 .

The exactness at M ′ means that ι is injective. The exactness are M ′′ means that p
is surjective. The exactness at M can be expressed equivalently by the following two
isomorphisms:

M ′ ∼= Im ι = ker p resp. M ′′ ∼= M/ ker p = M /Im ι = cokerι .

5. For every n ∈ N the map Z ·n→ Z that sends x 7→ nx is an injective homomorphism of
abelian groups. This fits into the short exact sequence of abelian groups

0→ Z ·n→ Z→ Z/nZ→ 0.

6. Chain complexes appear in (almost) all areas of mathematics. In differential geometry for
each smooth manifolds X one considers the de Rham complex Ω•(X), a chain complex of
smooth differential forms on X. The smooth p-forms Ωp(X) form a module over the ring
C∞(X) of smooth functions on X. The differential is in this case the exterior derivative.
Exactness of the de Rham complexes would mean that all closed differential forms indeed
exact. In algebraic topology there are several invariants of (certain kinds of) topological
spaces that take values in chain complexes of abelian groups. Some of these are even
used in data science and computer graphics. Another example in pure mathematics is the
Khovanov chain complex of a knot, which is a knot invariant that categorifies the Jones
polynomial.

Theorem 1.4.3 Let 0 → M ′ ι→ M
p→ M ′′ → 0 be an exact sequence. Then the following

are equivalent:

1. The injection ι admits a retraction, i.e. there exists an R-module homomorphism π : M →
M ′ with the property π ◦ ι = idM ′ .

2. The surjection p admits a section, i.e. there exists an R-module homomorphism s : M ′′ →
M with the property p ◦ s = idM ′′ .

3. There exists an isomorphism φ : M → M ′ ⊕M ′′ of R-modules, such that φ ◦ ι = ι1 and
pr2 ◦ φ = p.

The proof will be an exercise. To understand the last condition better, we consider the
commutative diagram

0 //M ′ ι //M
p //

φ
��

M ′′ // 0

0 //M ′ ι1 //M ′ ⊕M ′′ pr2 //M ′′ // 0

where the lower row contains the injection ι1 of M ′ into the direct sum and the surjection
pr2 onto M ′′ out of the direct product. Here we have an instance of “isomorphic (short) exact
sequences” in a sense that will be made precise in Section 6.7.

Definition 1.4.4 A short exact sequence, that satisfies one (and thus all) of the three
equivalent conditions in Theorem 1.4.3, is said to split.
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Examples 1.4.5
1. Short exact sequences of vector spaces always split, as every vector subspace has a com-

plement, see Corollary 1.3.7.

2. The short exact sequence of Z-modules 0→ Z/2Z→ Z4 → Z/2Z→ 0 does not split, for
otherwise we would have Z4

∼= Z/2Z⊕ Z/2Z.

Free modules are too special for the purposes of many constructions in homological algebra.
Moreover, they are defined using the set underlying a module. To single out a better class of
modules, we first note the following general property of modules:

Lemma 1.4.6 Let M be an R-module and

0→ T ′
ι→ T

π→ T ′′ → 0

a short exact sequence of R-modules. Then the sequence of abelian groups

0→ HomR(M,T ′)
ι∗→ HomR(M,T )

π∗→ HomR(M,T ′′)

is also exact. Here, the morphisms of abelian groups are induced by postcomposition with the
map from the short exact sequence, e.g.

ι∗ : HomR(M,T ′) → HomR(M,T )
φ 7→ ι ◦ φ

Proof. Since ι : T ′ → T is injective, an equality ι∗(φ)
def
= ι ◦ φ = ι ◦ φ′ def

= ι∗(φ
′) implies φ = φ′.

So, ι∗ is also injective.
If φ ∈ Hom(M,T ) is in the image of ι∗, then there exists φ′ ∈ Hom(M,T ′) with φ = ι∗φ

′ =
ι ◦ φ′. In this case π∗(φ) = π ◦ φ = π ◦ ι ◦ φ′ = 0, and so φ ∈ kerπ∗.

Conversely, let f ∈ kerπ∗, i.e. π∗f(m) = π ◦ f(m) = 0 for all m ∈ M . Then for every
m ∈ M we also have f(m) ∈ kerπ = Im ι. For every m ∈ M we now find a φ′(m) ∈ T ′ with
ι ◦ φ′(m) = f(m). As ι is injective, such φ′(m) are uniquely determined and φ′ is a module
homomorphism. By construction ι∗φ

′ = f , and so f ∈ Im ι∗.

In the conclusion of the lemma we omitted “→ 0” for a reason. Indeed, if π : T → T ′′ is
a surjective morphism of modules is, then π∗ : HomR(M,T ) → HomR(M,T ′′) need not be a
surjective morphism of abelian groups. For example, the morphism Z → Z/nZ of Z-modukes
is surjective, but the induced morphism

HomZ(Z/nZ,Z) = 0→ HomZ(Z/nZ,Z/nZ) ∼= Z/nZ

is clearly not surjective. One says that Hom(M,−) is left-exact, but not exact, see Defini-
tion 3.1.13.

Next we generalize free modules to projective modules, which are characterized by the
following theorem.

Theorem 1.4.7 Let R be a unital ring. The following statements about an R-module M
are equivalent:

1. For every diagram

M

��}}
N1

// N2
// 0
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with exact row there exists a lift (dotted), making the diagram commute. (The lift need
not be unique.)

2. There exists an R-module N , such that the R-module M ⊕N is free.

3. Every short exact sequence of the form 0→ N ′ → N →M → 0 splits.

4. For every short exact sequence of R-modules 0 → T ′ → T → T ′′ → 0 the induced
sequence of abelian groups

0→ HomR(M,T ′)→ HomR(M,T )→ HomR(M,T ′′)→ 0

is also exact.

The formulation of this theorem illustrates that in homological algebra one often tends to
avoid giving morphisms names. Note that the properties from the theorem are satisfied by
every vector space over a field, but not by every every module. For example, the Z-module
M = Z/2Z:

1. The identity on M does not admit a lift

Z/2Z

id
��}}

Z // Z/2Z // 0 ,

because the only group homomorphism Z/2Z→ Z is the trivial morphism.

2. There is no Z-module of the form M⊕Z/2Z that is free. Already the elements of Z/2Z ⊂
M⊕Z/2Z have torsion. But a free Z-module is of the form ⊕i∈IZ and thus has no torsion
elements.

3. The exact sequence
0→ Z/2Z→ Z/4Z→ Z/2Z→ 0

with its unique non-zero group homomorphisms does not split.

4. Applying HomZ(Z/2Z,−) transforms the short exact sequence

0→ Z 2·→ Z→ Z/2Z→ 0 into 0→ 0→ 0→ Z/2Z→ 0,

which is not exact. Here we used HomZ(Z/2Z,Z) = 0 and HomZ(Z/2Z,Z/2Z) ∼= Z/2Z.

Proof.

(1)⇒(3) The splitting of the sequence 0→ N ′ → N → M → 0 is given by the lift of the identity
in the diagram:

M

idM
��~~

N //M // 0

(3)⇒(2) By Theorem 1.3.5 every R-module M is the codomain of a surjective R-module homomor-
phism from a free module F , for example F := ⊕m∈MR. Let F →M be such a surjection
with kernel N ′. Since the exact sequence 0 → N ′ → F → M → 0 splits, Theorem 1.4.3
implies F ∼= M ⊕N ′ for the free module F .
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(2)⇒(4) First we observe that (4) holds for every free module M ∼= ⊕i∈IR, where I is an indexing
set for a basis of the free module M . In this case, HomR(M,N) ∼= HomR(⊕i∈IR,N) ∼=∏

i∈I N for every module N . The maps are simply the given maps, applied in every
component.

If M is a direct summand of a free module, say M ⊕N , then the sequence

0→ HomR(M ⊕N, T ′)→ HomR(M ⊕N, T )→ HomR(M ⊕N, T ′′)→ 0

is exact. By the universal property of the direct sum from Remark 1.2.2(3) this exact
sequence is termwise isomorphic to:

0→ HomR(M,T ′)× HomR(N, T ′)→ HomR(M,T )× HomR(N, T )→ HomR(M,T ′′)× HomR(N, T ′′)→ 0

Note that the kernel of a product of maps is the product of the kernels of the individual
maps, and the image of a product of maps is the product of the images; this we deduce
the exactness of the sequence from (4).

(4)⇒(1) As N1 → N2 is surjective, we get a short exact sequence

0→ ker((N1 → N2))→ N1 → N2 → 0

and (4) yields the exact sequence

0→ HomR(M, ker(N1 → N2))→ HomR(M,N1)→ HomR(M,N2)→ 0

and the surjectivity of the second to last map is exactly the statement of (1).

Definition 1.4.8 An R-module, that satisfies one (and thus all) of the four equivalent prop-
erties from Theorem 1.4.7 is called a projective module.

Examples 1.4.9

1. Free modules are projective by Theorem 1.4.7 (2). For R = Z every projective module
is free since, as we will see later in Theorem 4.1.1, submodules of submodules of free
Z-modules are free, in particular, all direct summands of free modules are free. The same
holds, as we will also see later, for every PID R. The Quillen–Suslin theorem says that
every finitely generated projective module over the polynomial ring F [x1, . . . , xn] over
a PID (thus in particular over a field F ) is free. We refer to [K80, IV.3.15] and [L02,
Theorem XX1.3.7] for proofs.

2. For R = R1 × R2 with R2 6= 0, the R-module M = R1 with (r1, r2).m = r1 · m is a
direct summand in R1 ⊕R2 = R and thus projective, but not free: in fact, every element
of m ∈ M is linearly dependent since (0, r2).m = 0 for all r2 ∈ R2. Thus there are
no (nontrivial) linearly independent families. Note that the ring R = R1 × R2 has zero
divisors.

3. Examples of non-free projective modules over integral domains (i.e. rings without zero
divisors) R need some number theory or algebraic geometry:

Let τ :=
√
−5; consider the commutative ring R = Z[τ ]. Let M = 〈2, 1 + τ〉 be the ideal

generated by 2 and 1 + τ ; as an ideal, it is an R-module.

We first show that M is not free as an R-module. Suppose M were free. As for vector
spaces, the rank of a free module is a lower bound for the cardinality of a generating
set. (To see this one can argue as in Theorem 1.3.3 modulo a maximal ideal.) Thus the
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rank of M is at most two. It actually cannot be two, because this would require two
R-linearly independent generators, which themselves are R-linear combinations of 2 and
1 + τ . But 2 and 1 + τ are linearly dependent over R, which is witnessed bythe relation
3 · 2 + (τ − 1)(1 + τ) = 0.

Thus the module M is free if and only if it is of rank one, i.e. a principal ideal of R, i.e.
M = (a) for some a ∈ R. We then necesarily have a|2 and a|1 + τ . Now we show that
2 is irreducible in R, i.e. is not multiplicatively invertible and cannot be written as the
product of two non-invertible elements. To show this, we define the norm map N : R→ Z
by N(x + τy) := x2 + 5y2. The norm is multiplicative, N(a · b) = N(a) · N(b), and so
N(b) = 1 if and only if b is a unit, i.e. is multiplicatively invertible in R.

Since N(2) = 4 and N(1+τ) = 6 neither 2 nor 1+τ are units. A common non-unit factor
a of 2 and 1+τ must have N(a) = 2. But for a = x+τy the equation N(a) = x2 +5y2 = 2
does not have any solutions for x, y ∈ Z. Thus M is not free. This also implies that M is
a proper submodule of R, since the regular module is free.

To show that M is projective, we consider the surjective morphism provided by the
generating set 2, 1 + τ

p : R⊕R → M
(r1, r2) 7→ r12 + r2(1 + τ) .

This epimorphism has a section:

s(2x+ (1 + τ)y) = (−2x− (1 + τ)y, (1− τ)x+ 3y).

Thus, by Theorem 1.4.3, the module M is a direct summand in free module R⊕ R, and
hence projective by Theorem 1.4.7.

4. Let X be a connected smooth manifold and E → X a smooth vector bundle of finite
rank. The space of smooth sections Γ(X,E) is a module over the ring C∞(X) of smooth
functions on X. If the manifold X is compact, then the module Γ(X,E) is projective.
The Serre–Sw ann theorem says that finitely generated projective C∞(X)-modules are in
bijection with vector bundles of finite rank. For details, see e.g. [N03, Theorem 11.32].

Theorem 1.4.10 Let M be an Ropp-module and 0 → N ′
ι→ N

p→ N ′′ → 0 a short exact
sequence of R-modules.

1. Then for every R-module the sequence of abelian groups

M ⊗R N ′
idM⊗ι−→ M ⊗R N

idM⊗p−→ M ⊗R N ′′ → 0

is exact.

2. If M is projective, then even the sequence

0→M ⊗R N ′ →M ⊗R N →M ⊗R N ′′ → 0

is exact.

Compare the first statement with the statement for Hom in Lemma 1.4.6. One says that
tensoring is right exact, see Definition 3.1.13.
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To see how exactness on the left may fail in 1.4.10, note that for every abelian group A we
have A⊗Z Z/nZ ∼= A/nA. Indeed, the morphism

A → A⊗Z Zn
a 7→ a⊗ 1

has kernel nA. In particular Z ⊗ Z/2Z ∼= Z/2Z and Q ⊗Z Z/2Z ∼= Q/2Q ∼= 0. Now tensoring
with Z/2Z transforms the short exact sequence

0→ Z→ Q→ Q/Z→ 0 into 0→ Z/2Z→ 0→ 0→ 0,

which is clearly not exact.

Proof. • For the first part we have to show exactness at M ⊗R N ′′ and at M ⊗R N . Let
x =

∑
mi ⊗ n′′i ∈ M ⊗R N ′′. As N → N ′′ is surjective, we can find preimages ni ∈ N of

the n′′i ∈ N ′′. Then M ⊗R N → M ⊗R N ′ maps
∑
mi ⊗ ni 7→ x, which establishes the

required surjectivity.

For exactness at M ⊗R N we consider the quotient

Q := coker(M ⊗R N ′
idM⊗ι−→ M ⊗R N) ≡ (M ⊗R N)/Im (M ⊗R N ′ →M ⊗R N)

as well as the map M ⊗RN
idM⊗p−→ M ⊗RN ′′ of abelian groups. The image of idM ⊗ ι is in

the kernel of idM ⊗ p, so the latter factors through a map

Q → M ⊗R N ′′
[m⊗ n] 7→ m⊗ p(n)

by
M ⊗R N

can

��

idM⊗p

''
Q //M ⊗R N ′′

We claim that this is an isomorphism. Once the claim is proved, the isomorphism theorem
implies Im (M ⊗R N ′ →M ⊗R N) = ker(M ⊗R N →M ⊗R N ′′), i.e. exactness.

To prove the claim, we construct the inverse map M ⊗R N ′′ → Q: to find its image on
m⊗n′′ we choose a preimage n ∈ N of n′′ and set m⊗n′′ 7→ [m⊗n]. This is well-defined:
every other choice of preimage is of the form n + k with k ∈ ker(p) = Im (ι) and thus
defines the same class in the cokernel Q.

The map thus defined is an isomorphism with inverse [m⊗ n] 7→ m⊗ p(n).

• For the second part of the theorem we have to show that injective maps stay injective
upon tensoring M ⊗R − with a projective right module M .

We first consider the case when M is not just projective, but actually free, M = ⊕i∈IR.
By distributivity of ⊗R for direct sums, this case yields

M ⊗R N ′
idM⊗ι //

∼=
��

M ⊗R N
∼=
��

⊕i∈IN ′
⊕ι // ⊕i∈IN
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where the map on every component (indexed by i ∈ I) is given by ι. Here we have used
R⊗RN ∼= N for every N . The lower row is injective if and only if ι : N ′ → N is injective.

A projective module M is a direct summand of a free module F by Theorem 1.4.7, say
M ⊕ M̃ ∼= F . Again by distributivity of ⊗R we have a commuting diagram

F ⊗R N ′ //

∼=
��

F ⊗R N

��

M ⊗R N ′ ⊕ M̃ ⊗R N ′ //M ⊗R N ⊕ M̃ ⊗R N

with the map given as direct sum. Thus it is injective on every summand.

We define two additional notions for modules over a ring:

Definition 1.4.11

1. An R-module M is called flat, if tensoring − ⊗R M preserves short exact sequences, or
equivalently, if tensoring with M preserves the injectivity of maps.

2. A module is called divisible, if for every 0 6= r ∈ R the map M
r.→ M , given by scalar

multiplication with r, is surjective.

Example 1.4.12 Exchanging the two sides of the tensor product in Theorem 1.4.10 shows
that all projective modules are flat. There are, however, flat modules that are not projective:

The Z-module Q is flat. Indded, consider an injective morphism of Z-modules M ′ ↪→ M .
Then the kernel of the composite map M ′ →M →M ⊗Z Q where M →M ⊗Z Q is given by
m 7→ m ⊗ 1, is by Example 1.2.6.4 exactly the set of those m′ ∈ M ′, whose image in M is a
torsion element. By injectivity of the morphism M ′ →M this can only happen if m′ is torsion
already in M , but then already m′ ⊗ 1 = 0 ∈M ′ ⊗Z Q.

However, Q is not projective over Z; for otherwise it would admit an embedding into a free
Z-module (even as direct summand), which is impossible as Q is a divisible Z-module, but free
Z-modules are never divisible.

Dual to the definition of projective modules is the notion of injective modules. For a mor-
phism f : T1 → T2 of R-modules we consider the morphism of algebras induced by precompo-
sition:

f ∗ : Hom(T2, N) → Hom(T1, N)
ϕ 7→ ϕ ◦ f

Note the order of T1 and T2 in the Hom-spaces! The proof of the following proposition will be
completed in Section 3.3.

Theorem 1.4.13 The following statements about an R-module M are equivalent:

1. For every diagram
0 // N1

//

��

N

}}
M

with exact row there exists a lift (dotted), making the diagram commute.

2. Every short exact sequence 0→M → N1 → N2 → 0 splits.
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3. For every short exact sequence of R-modules 0 → T ′ → T → T ′′ → 0, the induced
sequence of abelian groups

0→ HomR(T ′′,M)→ HomR(T,M)→ HomR(T ′,M)→ 0

is also exact.

Proof. The implication (1) ⇒(2) is proved analogously to (1)⇒(2) in Theorem 1.4.7 for pro-
jective modules, by reversing the arrows. Similarly, (3)⇒(1) here is analogous to (4)⇒(1) in
Theorem 1.4.7.

We are still missing an analogue of the characterization of projective modules as direct
summands of free modules. This will be considered in 3.3, after which we will complete the
proof here in analogy to Theorem 1.4.7.

Definition 1.4.14 An R-module that satisfies one (and thus all) of the three equivalent
properties from Theorem 1.4.13 is called an injective module.

Theorem 1.4.15 [Baer’s criterion] An R-module M is injective if and only if for every ideal
p in R and every morphism p→M of R-left modules, the lifting property from Theorem 1.4.13
holds:

0 // p //

��

R

~~
M

Proof. • If M injective the lifting property follows from 1.4.13.1 in the special case of R-
modules N1 = p and N = R.

• The converse for modules that are not finitely generated is an application of Zorn’s lemma
(see Appendix A):

Let 0 → N ′
ι→ N be an injective morphism of R-modules and f : N ′ → M an arbitrary

morphism of R-modules. In the diagram

0 // N ′ ι
//

f
��

N

g}}
M

we have to find a morphism g defined on all of N , such that the diagram commutes. We
say that g extends f from the submodule N ′ to N . To this end we consider the set of all
extensions,

X := {(K, g) |N ′ ⊆ K ⊆ N, g : K →M is an extension of f} .

The set X contains the trivial extension (N ′, f), and is thus non-empty. We define a
partial order on X by

(K, g) ≤ (K ′, g′)
def⇐⇒ K ⊆ K ′ and g′|K = g .

It is straightforward to see that every totally-ordered subset of X has the union as an
upper bound. By Zorn’s lemma X has a maximal element g0 : K0 → M , and we have to
show that K0 = N .

Suppose K0 6= N , then we could find n ∈ N \K0 and set p := {r ∈ R|r.n ∈ K0}. This
ideal is not the zero ideal, for otherwise the inner sum K ′ := K0 + Rn would be direct.
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In that case we could extend g0 to K ′ by specifying some value of M as image of n, in
contradiction to the maximality of K0.

Now consider the module homomorphism g0 ◦n : p
.n→ K0

g0→M . By assumption it can be
extended to a module homomorphism g̃ : R → M . Consider on K ′ := K0 + Rn ⊂ N the
extension g′(k + rn) = g0(k) + g̃(r). This g′ is well-defined because g̃ is an extension of
g ◦ n, i.e. agrees with g0 on the intersection p ∼= Rn ∩K0. But then (K ′, g′) > (K0, g0), a
contradiction to the maximality of (K0, g0).

Corollary 1.4.16 A module M over a PID R is injective if and only if it is divisible, i.e. if
the multiplication by any ring element r ∈ R \ {0} is surjective.

Proof. • We show that an R-module is divisible if and only if it satisfies Baer’s lifting
criterion from Theorem 1.4.15. In the PID R all ideals are of the form p = (α) for some
α ∈ R. Consider the diagram

0 // (α) //

φ
��

R

φ̃}}
M

Then φ is determined by its value φ(α) on the generator α of the principal ideal and φ̃
by its value on the generator 1 ∈ R.

• If M is divisible, then we can find m̃ ∈ M with α.m̃ = φ(α). We define the morphism
φ̃ by prescribing the value φ̃(1) := m̃ on the generator 1 ∈ R. For α we then have the
equation φ̃(α) = αφ̃(1) = αm̃ = φ(α), i.e. φ̃|(α) = φ. Hence, divisible R-modules have the
lifting property for ideals and are, thus, injective by Baer’s criterion from Theorem 1.4.15.

• Conversely, let M be injective and satisfy the lifting property from 1.4.13. To see that M
is divisible, let α ∈ R \ {0} and m ∈ M be given and we have to find an m̃ ∈ M with
αm̃ = m. To this end we consider the previous diagram with φ defined by φ(α) = m, find
φ̃ using lifting property, and set m̃ := φ̃(1) ∈M . Then we have

m = φ(α) = φ̃(α) = αφ̃(1) = αm̃ .

In particular, an abelian group considered as a Z-module is injective if and only if it is
divisible, i.e. if the multiplication with any n ∈ Z \ {0} is surjective. Examples of injective
abelian groups are the divisible groups Q and Q/Z; examples of non-injective modules are
given by free Z-modules, which are never divisible.

1.5 Simple modules and composition series

We have already met several important classes of modules, such as free, projective, injective,
and flat modules. Finally, we will also consider simple modules; despite the name, their structure
is actually not so “simple”.

Definition 1.5.1

1. A module M over a ring is called simple, if it is nonzero has no submodules except the
zero module and M itself.

2. Similarly, a representation V of a group G is called irreducible or simple, if V 6= 0 and 0
and V are the only subrepresentations of V .

33



3. A module M over a ring is called indecomposable, if it is nonzero and there are no two
nonzero submodules N1 and N2, such that M = N1 ⊕N2.

4. Similarly, a representation V of G is indecomposable, if V is nonzero and the are no two
nonzero subrepresentationsW1,W2 ⊂ V , such that V is the inner direct sum V = W1⊕W2.

Lemma 1.5.2

1. Let R be a ring and M an R-module. Then M is simple if and only if every x ∈M with
x 6= 0 is a generator of M . Simple modules are thus, in particular, cyclic.

2. Every generator m of a cyclic module M defines a surjection:

φm : R → M
r 7→ r.m

Its kernel is a maximal left ideal of R if and only if M is simple.

Proof. 1. LetM be a simple module. Consider for x ∈M , x 6= 0 the submodule 〈x〉 generated
by x. Since 1.x = x ∈ 〈x〉, this submodule is nonzero. Since M has no non-trivial proper
submodules, we must have 〈x〉 = M .

Conversely, let us assume that every nonzero x ∈M is a generator. Suppose U ⊂M is an
arbitrary nonzero submodule. Choose x ∈ U with x 6= 0; this is a generator of M and thus
M = 〈x〉 ⊂ U ⊂M . This shows U = M hence M has no nonzero proper submodules.

2. Let M be simple; suppose the kernel were not a maximal left ideal, but rather strictly
contained in a maximal ideal m, i.e. kerφm ( m ( R. Then φm(m) ( M would be a
nonzero proper submodule of M , in contradiction to simplicity.

Conversely, let kerφm be maximal, but suppose there exists a submodule U with 0 ( U (
M . Then kerφm ( φ−1

m (U) ( R, in contradiction to maximality of the ideal kerφm ⊂
R.

Warning: not every cyclic module is simple. For example the Z-module Z/6Z is cyclic, but by
the Chinese remainder theorem Z/6Z ∼= Z/2Z⊕Z/3Z not simple. For another counterexample
consider the polynomial ring R = K[X] over a field K and the R-module given by a K-vector
space with an endomorphism consisting of a single Jordan block of size at least two. Finally,
the regular module RR is cyclic, but typically not simple.

Examples 1.5.3

1. Representations of groups on a K-vector space of dimension 1 are irreducible.

2. If char K 6= 2 then the group Z/2Z two irreducible one-dimensional representations K±.
By Example 1.1.18 (8), every finite-dimensional Z/2Z-representation over K is completely
reducible, i.e. isomorphic to a unique representation of the form

Km
+ ⊕Kn

− with m,n ∈ N .

3. If char K = 2, then the trivial one-dimensional representation K is irreducible and there
exists a two-dimensional representation P that is indecomposable, but not irreducible,
see Example 1.1.18 (8). Every finite-dimensional representation is isomorphic to

Kn ⊕ Pm with n,m ∈ N .

The representation P is actually a free module of rank 1 and, thus, projective and cyclic.
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4. Consider the quotient K[X]/(X2) of the polynomial ring. It has, up to isomorphism, a
single indecomposable projective module and a single, one-dimensional simple module
which is free.

Lemma 1.5.4 Let R be a ring, E a simple R-module, and M an arbitrary R-module.

1. Every homomorphism E → M is injective or zero because the kernel is a submodule of
E.

2. Every homomorphism M → E is surjective or zero because the image is a submodule of
E.

3. The endomorphism ring EndR(E) is a division ring, i.e. all nonzero endomorphisms are
invertible.

Theorem 1.5.5 [Schur’s lemma]
Let K be an algebraically closed field and A a K-algebra. Let M be a simple A-module, that
is finite-dimensional as K-vector space, dimK M <∞.

Then M has no endomorphisms except scalar multiples of the identity:

K
∼−→ EndA(M)

λ 7→ λidM
.

Proof. As M is simple by assumption, we have M 6= 0. Every endomorphism ϕ ∈ EndA(M) has
at least one eigenvalue λ since dimKM <∞ and K is algebraically closed. The corresponding
eigenspace the kernel of the module homomorphism ϕ−λ idM and thus a submodule of M . As
M is simple, the kernel must be equal to M , i.e. ϕ = λ idM .

Remarks 1.5.6

1. For a finite group G, the group algebra K[G] is finite-dimensional over K and so is every
irreducible representation V , since it appears as a quotient of K[G] by Lemma 1.5.2. For
such V we can drop the separate assumption on finite-dimensionality in Schur’s lemma.

2. Every finite-dimensional irreducible representation of an abelian group over an alge-
braically closed field is one-dimensional. This is because every group element g ∈ G acts
on a finite-dimensional representation by an endomorphism ρ(g) of the representation:

ρ(g)ρ(h) = ρ(gh) = ρ(hg) = ρ(h)ρ(g) for all h ∈ G .

Schur’s lemma 1.5.5 now implies that all group elements act by multiples of the iden-
tity, and so the representation can be decomposed into a direct sum of one-dimensional
subrepresentations.

3. We consider an example over the field of real numbers. The group of fourth roots of unity
in the complex numbers, G = {±1±i} ∼= Z4 acts by multiplication on the two-dimensional
R-vector space V = Ċ. They act by rotations, thus there are no invariant one-dimensional
subvector spaces. We thus obtain an irreducible real representation of G on Ċ, but we
also have

K = R $ EndG(V ) ∼= C

as R-algebra. Indeed, the field R is not algebraically closed, so that we cannot apply
Schur’s lemma 1.5.5. Note, however, that the endomorphism ring C is a division ring over
the field R, compatible with Lemma 1.5.4.
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4. Let K ⊂ L be a proper field extension. Then the K-vector space V = L carries a
representation of the group G = L× over K. Every element of L \ {0} is a generator for
the L×-action, so the representation is irreducible by Lemma 1.5.2. In this example

EndGV = L ,

which is not equal to K, even when K is algebraically closed. But for algebraically closed
K a proper field extension L/K is not finite-dimensional!

A natural question is, how to build modules from simple modules. This leads to the following
definition:

Definition 1.5.7 Let R be a ring and M an R-module. M is said to be of finite length if
and only if there exists a finite chain of submodules

M = Mr ⊃Mr−1 ⊃ . . . ⊃M0 = 0,

such that all quotient modules Mi/Mi−1 are simple. Such a chain is called composition series
of M , the modules Mi/Mi−1 are called subquotients of the composition series. The minimal
possible length r of a composition series is called the length of the module M .

We will see that a version of the theorem of Jordan-Hölder holds for modules. The subquo-
tients are unique up to ordering and are called the composition factors of the module M .

For this we will need the following important lemma.

Lemma 1.5.8 [Nine lemma] Consider a diagram of modules with short exact rows:

A′

ϕ1

��

� �

ι1
// A

ϕ2

��

π1
// // A′′

ϕ3

��
B′

ψ1
��

� �

ι2
// B

ψ2

��

π2
// // B′′

ψ3
��

C ′ �
�

ι3
// C π3

// // C ′′

such that the vertical composites are zero, i.e. ψi ◦ ϕi = 0 for i = 1, 2, 3. Suppose the diagram
is commutative in the sense, that all 4 squares commute. Now if two of the columns are short
exact sequences, then also the third column is a short exact sequence.

Proof. We only consider the case, in which the left middle column are assumed to be short
exact sequences.

• The surjectivity of ψ3 follows from the commutativity of the lower right square, ψ3 ◦π2 =
π3 ◦ ψ2. This implies

Im (ψ3) ⊇ Im (ψ3 ◦ π2) = Im (π3 ◦ ψ2) = C ′′ ,

since π3 and ψ2 are surjective by assumption.

• To show the injectivity of ϕ3 we consider a′′ ∈ A′′, such that ϕ3(a′′) = 0. By surjectivity
of π1 we find a preimage a ∈ A under π1:

π1(a) = a′′ .
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Define b := ϕ2(a) ∈ B. This element has two properties:

ψ2(b) = ψ2 ◦ ϕ2(a) = 0 because ψ2 ◦ ϕ2 = 0

π2(b) = π2 ◦ ϕ2(a) = ϕ3 ◦ π1(a) = ϕ3(a′′) = 0 .

The last property and the exactness of the second row let us find a b′ ∈ B′, such that

b = ι2(b′)

and the first property then implies

ι3 ◦ ψ1(b′) = ψ2 ◦ ι2(b′) = ψ2(b) = 0 .

As ι3 is injective, we deduce ψ1(b′) = 0. Now we use the exactness of the first column to
find a preimage of b′ in A′, i.e.

b′ = ϕ1(a′) with a′ ∈ A′.

We now compute ϕ2 ◦ ι1(a′) = ι2ϕ1(a′) = ι2(b′) = b = ϕ2(a). Now ϕ2 was assumed to be
injective, so we have i1(a′) = a. Then we get a′′ = π1(a) = π1i1(a′) = 0 by exactness of
the first row, which shows that ϕ3 is injective.

• Im ϕ3 ⊂ ker ψ3 was already part of our assumptions, so we have to show the reverse
inclusion. Let b′′ ∈ kerψ3. As π2 is surjective we find a preimage b ∈ B, such that
π2(b) = b′′. We compute

0 = ψ3(b′′) = ψ3 ◦ π2(b) = π3 ◦ ψ2(b) ,

which, by exactness of the third row, implies that c := ψ2(b) can be written as i3(c′) = c.
As ψ1 is surjective we find a preimage b′ ∈ B′, such that ψ1(b′) = c′. We consider the
difference xb := −ι2(b′) + b ∈ B:

π2(xb) = −π2 ◦ ι2(b′) + π2(b) = π2(b) = b′′

ψ2(xb) = −ψ2ι2(b′) + ψ2(b) = −ι3ψ1(b′) + c

= −ι3(c′) + c = −c+ c = 0.

By the last equation and exactness of the second column there exists a ∈ A, such that
ϕ2(a) = xb. Set a′′ := π1(a) and compute

ϕ3(a′′) = ϕ3 ◦ π1(a) = π2 ◦ ϕ2(a) = π2(xb) = b′′ .

Thus we have b′′ ∈ Im ϕ3; and so the right column is exact.

The technique used in this proof is called a diagram chase.

Theorem 1.5.9 [Jordan-Hölder theorem]
1. If a module M has finite length, then so does every submodule N ⊂M and every quotient
M/N of M , and

`(M) = `(M/N) + `(N).

2. Any two composition series of a module of finite length have equal length and subquotients
that are isomorphic, up to reordering. I.e. if

M = Mr ⊃Mr−1 ⊃ . . . ⊃M0 = 0, and M = M̃s ⊃ M̃s−1 ⊃ . . . ⊃ M̃0 = 0

are two composition series of a module M , then r = s and there exists a permutation
σ ∈ Sr with

M̃i/M̃i−1
∼= Mσ(i)/Mσ(i)−1 for all i .
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Proof. Let M be an R-module with composition series

M = Mr ⊃ . . . ⊃M0 = 0

and N ⊂M a submodule. We consider the canonical surjection

can: M �M := M/N

and the submodules

Ni := Mi ∩N ⊂ N and M i := can (Mi) ⊂M

In the commutative diagram

Ni−1 ↪→ Ni � Ni/Ni−1

↓ ↓ ↓
Mi−1 ↪→ Mi � Mi/Mi−1

↓ ↓ ↓
M i−1 ↪→ M i � M i/M i−1

the rows are exact and the first two columns are exact. By the Nine Lemma 1.5.8 we get for
every i = 1, . . . r a short exact sequence

Ni/Ni−1 ↪→Mi/Mi−1 �M i/M i−1 . (∗)

The quotient module Mi/Mi−1 in the middle is a composition factor of M and thus sim-
ple. Then the quotient modules Ni/Ni−1 and M i/M i−1 have to be zero or simple too. More
specifically, Ni/Ni−1 is zero if and only if M i/M i−1 is a simple module. After omitting those
modules Ni, for which the quotient is zero is, the remaining Ni form a composition series for
the submodule N . Conversely, the nonzero M i/M i−1 form a composition series for the quotient
M/N . We deduce that all submodules and all quotients of M have finite length. From the short
exact sequence (∗) we also deduce

`(N) + `(M/N) = `(M) .

2. is proved by induction in the length of the module. The induction start `(M) = 1 is imme-
diate. Now consider two composition series for the module M :

M ⊃ X ⊃ · · · ⊃ (0) and M ⊃ Y ⊃ · · · ⊃ (0)

If X = Y , then we may use the induction hypothesis. Otherwise we consider the canonical
surjection

π : M →M/Y .

The module M/Y is simple, and so π(X) = M/Y . To see this, note that otherwise we would
have π(X) = 0, and so X ⊂ Y . But by Lemma 1.5.2.2 X is maximal as it is the kernel of a
surjection onto a simple module; i.e. X = Y .

Thus π induces an isomorphism of modules

X/(X ∩ Y ) ∼= M/Y . (∗∗)

By exchanging X and Y we analogously get

Y/(X ∩ Y ) ∼= M/X . (∗ ∗ ∗)
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Now we choose a composition series of the intersection X ∩ Y and compare the following
four composition series of M :

M ⊃ X ⊃ · · · ⊃ (0)

M ⊃ X ⊃ (X ∩ Y ) ⊃ · · · ⊃ (0)

M ⊃ Y ⊃ (X ∩ Y ) ⊃ · · · ⊃ (0)

M ⊃ Y ⊃ · · · ⊃ (0) .

The first and the second composition series are equivalent by the induction hypothesis applied to
the moduleX. By an analogous argument the third and fourth composition series are equivalent.
Finally, the second and the third composition series are equivalent by the isomorphisms (∗∗)
and (∗ ∗ ∗).

Corollary 1.5.10 Let R be a ring that has finite length as left module over itself. Then
every simple R-module M is a quotient of R, considered as left module over itself, and thus
appears in every composition series of R as subquotient.

Proof. By Lemma 1.5.2 every generator of M yields a surjection ϕ : R � M . Thus there
exists a composition series of the form R ) kerϕ ) . . ., in which R/kerϕ ∼= M appears as
composition factor. By the Jordan-Hölder Theorem 1.5.9 M appears in all composition series
of R as subquotient.

Corollary 1.5.11 Let R be a ring that has a field K as subring. If R is finite-dimensional
over K, then there exist at most dimK R distinct simple R-modules up to isomorphism.

Proof. Every R-module M is also a K-vector space by restriction of scalars. If M is simple,
and thus nonzero, we have dimKM ≥ 1. For general M we have `(M) ≤ dimK(M). By
Corollary 1.5.10 every simple module appears in all composition series of R as subquotient, so
there are at most `(R) ≤ dimK(R) distinct simple R-modules.

The statement holds, in particular, for finite-dimensional K-algebras and thus for the group
algebras of finite groups from Definition 1.1.16.

Theorem 1.5.12 Let G be a finite group and K a field. Then there exist at most |G| distinct
isomorphism classes of irreducible representations of G over K.

Proof. By Lemma 1.1.19 we can consider representations of G as modules over the group ring
K[G]. The claim then follows directly from Corollary 1.5.11, since dimK K[G] = |G|.
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2 Categories, functors and natural transformations

In this chapter we introduce categorical language that allows a very efficient description of
constructions for modules over rings (and similar constructions in many other areas of mathe-
matics). The essential feature here is that one simultaneously considers mathematical structures
and their structure-preserving maps. As references for category theory, we recommend the clas-
sical work [McL71] as well as [R16] and, for the German reading audience [B16].

2.1 Categories

Definition 2.1.1 A category C consists of a class ob C of objects and a class mor C of
morphisms, together with the following maps:

1. The identity map id: ob C → mor C

2. The source and target maps s, t : mor C → ob C

3. The composition map ◦ : mor C×ob Cmor C → mor C. Its preimage consists of those pairs
(x, y) ∈ mor C ×mor C, for which s(x) = t(y).

These maps are required to satisfy the following axioms:

1. HomC(a, b) := {f ∈ mor C | s(f) = a, t(f) = b} is a set and not a proper class.

2. s ◦ id = t ◦ id = idob C
(“source and target of the identity on an object X is X itself.”)

3. s(f ◦ g) = s(g), t(f ◦ g) = t(f)
(“target of a composite is the target of the map applied last, source of a composite is the
source of the map applied first.”)

4. idt(f) ◦ f = f , f ◦ ids(f) = f .
(“composition with identity morphisms is the identity.”)

5. f ◦ (g ◦ h) = (f ◦ g) ◦ h, whenever the composition is defined (associativity).

We immediately define

Definition 2.1.2 Two objects c, c′ in a category are isomorphic, if there are morphisms
f ∈ HomC(c.c

′) and g ∈ HomC(c
′, c) such that g ◦ f = idc and f ◦ g = idc′ . We then write c ∼= c′.

Isomorphism is an equivalence relation. The equivalence classes are called isomorphism classes.

Examples 2.1.3

1. The category Set of sets, whose objects sets and whose morphisms are maps of sets.

2. Similarly one defines the categories Grp of groups and Ab of abelian groups. For a com-
mutative ring R one also defines the category AlgR of R-algebras and the category Alg1

R

of unital R-algebras.

For rings R and S one defines the categories R−Mod of R-left modules, Mod−R of R-
right modules, and R-S−Bimod of R-S-bimodules. We use the notation vectK for the
category of vector spaces over a field K.

3. Top: the objects are topological spaces and the morphisms are continuous maps.
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4. If the objects form a set rather than a proper class, then the category is called small.

We explain why in the definition of a category we talk about sets and classes : for applying
category in practice one would like to have a notion of a “category of all sets” and, for
constructing interesting categories, for a given a property ϕ(x) of a set x, also a category
“{x |ϕ(x)}” of all sets having the property ϕ. Famously, this leads to contradictions, such
as the one of the category of all sets that are not elements of themselves.

A solution to this problem is to restrict the application of ϕ to be allowed only for sets
that are elements in some specific set U (where it is supposed that the notion of a set
is defined, e.g. by working with Zermelo-Fraenkel axioms.) Further, such a set U must
be sufficiently nice – technically speaking, it must be a universe (for details see [McL71,
Sect. I.6]). All mathematical constructions are then carried out inside the universe U. A
set that is an element of U is called small (relative to U). It should be appreciated that,
with this definition, sets that are small in terms of cardinality are not necessarily U-small;
for example, the one-element set {U} is not U-small. Functions between small sets relative
to U can be constructed inside U. This yields for each universe U a category of U-small
sets.

A category C is now called U-small if the set ob (C) of objects is in U. The category of
U-small categories is not U-small, because this would imply U ∈ U, thus violating the
axioms of a universe. A class C (relative to a universe U) can then be defined as an
arbitrary subset C ⊆U. It follows that every U-small set is a U-class, but the converse is
not true. Using classes, we can now talk about the category of U-small categories.

The choice of U is usually supressed in the notation. It is common to enlarge the axioms
of set theory by requiring that for any set X there is a universe U such that X ∈ U, which
in particular ensures the existence of universes.

5. The empty category and the category with exactly one object with its identity morphisms
are the two smallest categories. More generally, for every object a of a category, Hom(a, a)
is a unital associative monoid. Categories with one object are in fact in bijection with
unital monoids. If G is an associative unital monoid, we write BG or ∗//G for the corre-
sponding one-object category.

6. If R is even a ring, the hom-set of the one-object category BR has the structure of an
abelian group and composition is bilinear. If A is even an R-algebra over a commutative
ring R, the hom-set of the one-object category BA has the structure of an R module and
composition is bilinear and thus induces a map Hom(∗, ∗)⊗R Hom(∗, ∗)→ Hom(∗, ∗).

7. Groups are in bijection to categories with a single object, in which all morphisms are
isomorphisms. For a group G we denote the associated category with one object with
∗//G. Categories, in which all morphisms are isomorphisms, are called groupoids.

8. Partially-ordered sets: Let (X,≤) be a partially-ordered set, considered as a category X,
whose objects are the elements of X and HomX(x, y) is a one-element set if x ≤ y and
empty otherwise. The composition is thus uniquely determined, since there is at most one
map between any two objects.

9. The identity is a particular example of a partial order that can be considered on any set
X. Any set X thus gives rise to a category X whose objects are the elements of the set
and that has only identity morphisms. Such a category is called a discrete category.
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10. The category of finite ordinals ∆ has as objects the totally ordered sets [n] :=
{0, 1, 2, . . . n} and as morphisms order preserving maps.

We discuss some examples of morphisms in the category ∆: The coface maps

di : [n− 1] → [n] for 0 ≤ i ≤ n

with di(j) = j for 0 ≤ j ≤ i− 1 and di(j) = j+ 1 for i ≤ j ≤ n are strictly monotonously
increasing and omit the value i. The codegeneracy maps

si : [n+ 1] → [n] for 0 ≤ i ≤ n

with si(j) = j for j = 0, . . . i, si(i) = si(i+1) = i and si(j+1) = j−1 for j = i+1, . . . n+1
are strictly monotonously increasing, except for taking twice the value i. We find the
relations

djdi = didj−1 if i < j
sjsi = sisj+1 if i ≤ j
sjdi = disj−1 if i < j
sidi = id = sidi+1

sjdi = di−1sj if i > j + 1.

These maps can be seen as a set of generators for the morphisms of ∆ in the sense that
any morphism in ∆ is a composition of these morphisms. The relations given can be seen
to be the only relations in ∆.

Definition 2.1.4 Let C,D categories.

1. The category Copp is the category with the same objects as C, but with morphisms
HomCopp(a, b) := HomC(b, a) and the composition f ◦opp g := g ◦C f .

2. The category C
∐
D is the category, whose objects and morphisms are the disjoint unions

of the objects resp. morphisms of C and of D.

3. Similarly one define C×D, the Cartesian product category. One can also construct infinite
disjoint unions resp. products.

4. A subcategory of a category C is a category S whose objects are objects in C and whose
morphisms are morphisms in C with the same identities and composition of morphisms.
A subcategory S is called a full subcategory of C if for each pair of objects X, Y ∈ S, we
have HomS(X, Y ) = HomC(X, Y ).

Next we have to introduce “maps” between categories. They have to act on objects and
morphisms.

Definition 2.1.5 Let C and D be categories. A functor F : C → D assigns to each object
c of C an object F (c) of D, and to every morphism f ∈ HomC(c, c

′) a morphism F (f) ∈
HomD(F (c), F (c′)). These assignments have to satisfy:

1. F (idc) = idF (c).

2. F (f ◦ g) = F (f) ◦ F (g).

A functor F : C → Dopp is also called contravariant functor from C to D. If we wish to emphasize
the difference, we call functors C → D covariant.
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This is clearly the same data as a functor F : Copp → D; a contravariant functor “switches
the direction of arrows”.

Examples 2.1.6

1. For an any category C, there exists an identity functor id : C → C, defined as the identity
on objects and morphisms.

2. The functor U : R−Mod→ Ab, that sends R-modules to their underlying abelian groups.
Functors of this kind are called forgetful functors. Another important forgetful functor
Grp→ Set sends a group to the underlying set.

3. For G a group, a functor Fρ : BG→ vectK is the same as a K-linear representation of the
group G. For a ring R, a functor BR→ Ab, where Ab is the category of abelian groups, is
an R-module. Similarly, a functor BRopp → Ab is a right R-module and B(R⊗Ropp)→
Ab an R-bimodule.

4. Every ring homomorphism Φ: R→ S defines a functor that performs restriction of scalars
S−Mod → R−Mod, see Lemma 1.1.23. For example, by restriction of scalars along the
inclusion R ↪→ C we may view every complex vector space as a real vector space.

5. The functor F = −∗ : vectK → vectopp
K , that sends vector space to their dual spaces,

F (V ) = V ∗, and linear maps to their dual maps, F (f) = f ∗.

6. The functor F =∗∗ : vectK → vectK that sends vector space to their double dual spaces,
F (V ) = V ∗∗ and linear maps to their double dual maps, F (f) = f ∗∗.

7. The functor
∐

: Set×Set→ Set, that sends two sets X, Y to their disjoint union X
∐
Y ,

and the functor
∏

, that sends pairs of sets to their Cartesian product.

8. The functor ⊗R : Ropp−Mod × R−Mod → Ab. If the ring R is even commutative, then
one obtains functors into the category of R-modules.

9. Let C be an arbitrary category. For every object W in C we define as in Lemma 1.4.6 a
covariant functor

Hom(W,−) : C → Set

on objects by
Hom(W,−) : X 7→ HomC(W,X) .

A morphism X
ϕ→ Y is sent to the map of sets given by precomposition

ϕ∗ : HomC(W,X) → HomC(W,Y )
f 7→ ϕ ◦ f .

It is straightforward to check that this defines a functor. with values in the category of
sets.

10. Let C again be an arbitrary category. For every object W in C we define as we did after
Example 1.4.12 a contravariant functor, i.e. a functor

Hom(−,W ) : C → Setopp

on objects by
Hom(−,W ) : X → HomC(X,W ) .
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A morphism X
ϕ→ Y is sent to the map of sets given by postcomposition

ϕ∗ : HomC(Y,W ) → HomC(X,W )
f 7→ f ◦ ϕ .

It is straightforward to check that this defines a contravariant functor. with values in the
category of sets.

11. The morphism sets HomC(·, ·) of the category C = R−Mod of modules over a ring R, the
morphism sets carry the structure of abelian groups. One says that the category R−Mod
is enriched over the category Ab. In this case, we have a functor

HomR : Ropp−Mod×R−Mod→ Ab

If the ring R is even commutative, then one obtains functors into the category of R-
modules.

12. Let C be the category with two objects 0, 1 and only two morphisms 0
s→ 1 and 0

t→ 1
different from identities. A functor Copp → Set is an oriented graph.

13. A simplicial set is a presheaf on the simplex category ∆ introduced in Examples 2.1.3,
that is, a functor X : ∆opp → Set from the opposite category of the simplex category to
the categorySet of sets. More generally, a simplicial object in a category C is a functor
X : ∆opp → C.
Let X be a topological space. Consider the functor | · | : ∆ → Top that assigns to an
object [n] ∈ ∆ the standard n-simplex in Rn+1. The functor

HomTop|(| − |, X) : ∆opp → Set

is a simplicial set. Composing it with the functor that assigns to a set the corresponding
freely generated R-module gives a simplicial object in R−Mod which is central in algebraic
topology.

Definition 2.1.7 Two categories C,D are isomorphic, if there are two functors F : C → D
and G : D → C, such that G ◦ F is the identity functor on C and F ◦G is the identity functor
on D.

Remarks 2.1.8

1. We already know examples of isomorphic categories:

– For every ring R the categories of R-right modules and the category of Ropp-left
modules are isomorphic, see Remarks 1.1.6.

– For every field K the category of K[X]-modules and the category of K-vector spaces
with a K-linear endomorphism are isomorphic, see Lemma 1.1.15.

– For every field K and every group G the category of K-linear G-representations and
the category of K[G]-modules are isomorphic, see Lemma 1.1.19.

2. Isomorphism of categories is, as we will see, a too narrow notion.

To compare categories in an adequate way it is important to have structures that relate
functors. For example, recall that a functor Fρ : ∗ //G→ vectK is the same data as a K-linear
representation of G, but we have not yet seen the categorical concept that would correspond
to a morphism of representations.
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As another example, we consider the category vectK of K-vector spaces for a field K. Both
the identity and the double dual functor −∗∗ are endofunctors

id,−∗∗ : vectK → vectK .

For every object in the category, i.e. every K-vector space V , we have a linear map

ιV : V 7→ V ∗∗

v 7→ (ϕ 7→ ϕ(v))

that is an isomorphism whenever V is finite-dimensional. Via this map one often identifies a
finite-dimensional vector space with its double dual space. Here we relate the two functors
id and −∗∗, by assigning to every object of the source category a morphism in the target
category between the two images of the object under the two functors. These maps satisfy
certain relations and this leads to the following definition.

Definition 2.1.9
1. If F,G are functors from a category C to a category D, then a natural transformation
N : F → G, sometimes denoted F ⇒ G, is an assignment that sends an object c in
the category C to morphism Nc : F (c) → G(c) in the category D, such that for every
morphism f ∈ HomC(c, c

′) in the category C the following diagram in the category D
commutes:

F (c)
Nc //

F (f)
��

G(c)

G(f)
��

F (c′)
Nc′ // G(c′)

2. If all components Nc of a natural transformation are isomorphisms in the category D,
then we call it a natural isomorphism.

Examples 2.1.10
1. For the restriction of the two endofunctors

id,−∗∗ : vectfK → vectfK

onto the subcategory vectfK of finite-dimensional K-vector spaces the isomorphisms re-
called above define a natural isomorphism id→ −∗∗.

2. For a small category C and an arbitrary category D, one can define the functor category
[C,D], whose objects are the functors F : C → D and whose morphisms are the natural
transformations between the functors. The readers are encouraged to check that all axioms
of a category are satisfied. We have, for example, R−Mod = [BR,Ab].

3. Let C be the totally-ordered set [n] := {0, . . . , n}, that we consider as a small category
as in Example 2.1.3.6. A functor [n] → R−Mod is the same as a sequence R0 → R1 →
. . .→ Rn of R-modules and maps between them. A natural transformation between two
such functors R and S is a commutative diagram of the form

R0 → R1 → . . . → Rn

↓ ↓ ↓
S0 → S1 → . . . → Sn

This gives us a notion of morphisms for when two sequences of modules and morphisms,
and by restriction, also for complexes. Since simplicial sets have been introduced in Ex-
amples 2.1.6 as functors, we obtain a category of simplicial sets and, more generally, of
simplicial objects in a category.
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4. In the same way, we get a category Graph of directed graphs. Considering categories with
functos as morphisms as a category Cat, we obtain a forgetful functor U : Cat→ Graph.

Natural transformations allow us to weaken the notion of isomorphism of categories. It is
often problematic to require two objects of a category to be equal, the more natural requirement
is isomorphism. For a small category C the functors C → D form the functor category from
Examples 2.1.10. Correspondingly, it appears unnatural to require the two composites F ◦ G
and G ◦ F of two functors to be equal to identity functors.

Definition 2.1.11 Let F : C → D be a functor between two categories C and D. Then F is
called an equivalence of categories, if there exists a functorG : D → C and natural isomorphisms

ε : G ◦ F → idC and η : idD → F ◦G .

In words, a functor F is an equivalence if there exists an “inverse” functor G, such that the
composites F ◦G and G ◦F are, not necessarily equal, but at least naturally isomorphic to the
appropriate identity functors.

We give another characterization of the notion of equivalence.

Definition 2.1.12

1. A functor F : C → D is called full/faithful/fully faithful, if all maps F : HomC(c, d) →
HomD(F (c), F (d)) on Hom-spaces are surjective/injective/bijective.

2. A functor F : C → D is called essentially surjective, if for every object d of D there exists
an object c in C, such that F (c) and d are isomorphic, F (c) ∼= d.

Theorem 2.1.13 A functor F : C → D is an equivalence of categories if and only if it is fully
faithful and essentially surjective.

Proof. • Let F be a equivalence of categories with functor G : D → C and natural isomor-
phisms η : idD

∼→ FG and ε : GF
∼→ idC. Then for every object W ∈ D there exists an

isomorphism ηW : W
∼→ FG(W ), which implies that the functor F is essentially surjective.

• For every morphism V
f→ V ′ in C the naturality of ε : G ◦ F → idC yields a commuting

diagram
GF (V ) ∼

εV
//

GF (f)
��

V

f

��
GF (V ′) ∼εV ′

// V ′ .

(∗)

Now the assumption F (f1) = F (f2) implies G(F (f1)) = G(F (f2)) and thus f1 = f2 using
(∗), so is F is faithful. Using the natural isomorphism η we also get that the functor G is
faithful.

• To show that the functor F is full, consider a morphism g : F (V ) → F (V ′) in D. Set
f := εV ′ ◦G(g)ε−1

V : V → V ′, then the commuting diagram (∗) implies the identity

εV ′ ◦G(F (f))ε−1
V

(*)
= f = εV ′ ◦G(g)ε−1

V

and so GF (f) = G(g). As G is faithful, i.e. injective on morphisms, this implies F (f) = g,
and so the functor F is full. Analogously one shows that G is full.
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• Conversely, suppose that F : C → D is an essentially surjective and fully faithful functor.
Using essential surjectivity of F we can find for every given object W ∈ D an object
G(W ) in C and an isomorphism ηW : W

∼→ F (G(W )). (Here we may need to use the
axiom of choice.)

For a morphism g : W → W ′ in D we consider

ηW ′ ◦ g ◦ η−1
W : FG(W )→ W → W ′ → FG(W ′) .

Since the functor F was assumed to be fully faithful, there exists a unique morphism
G(g) : G(W )→ G(W ′) that maps to ηW ′ ◦ g ◦ η−1

W under F . It is straightforward to check
that this defines a functor G and that η : idD → FG is a natural transformation.

• We still have to define a natural isomorphism εG : GF → idC. For an object V in C we
have an isomorphism

ηF (V ) : F (V )→ FGF (V )

and thus η−1
F (V ) : FGF (V ) → F (V ). Since F was assumed to be fully faithful, we can

define εV : GF (V )
∼→ V as the unique preimage of the morphism η−1

F (V ) under F . It is
straightforward to check that this defines a natural isomorphism.

Examples 2.1.14

1. We give an example for two equivalent categories: the category vectfK of finite-dimensional
K-vector spaces is equivalent to the category with an object [n] for every n ∈ N – we
think of this as the vector spaces Kn – and with matrices as morphisms Hom([n], [m]) :=
M(n × m,K). composition is matrix multiplication. Note that the category vectfK has
the property that morphisms spaces are themselves objects in the category, i.e. vector
spaces. But the second category does not have this property! This makes, for example,
the definition of the dual vector space less straightforward. For practical purposes, the
second category is still very useful, though.

2. A generator of a category C is an object X, such that the functor Hom(X,−) : C → Set
is faithful. Let A and B be rings. Then the following statements are equivalent:

(a) The categories A-mod and B-mod of left modules are equivalent.

(b) The categories Aopp -mod and Bopp-mod are equivalent.

(c) There exists a finitely generated projective generator P of A-mod and a ring-
isomorphism B ∼= EndA(P ).

For the proof of this statement, known as Morita’s theorem, we refer to the literature,
e.g. [P97, Chapter 4].

We are working towards an important category-theoretical lemma, for which we need to
consider functors into the category Set of sets. Recall from Examples 2.1.6.9 that for every
object c of a category C we have the functor:

yc := HomC(c,−) : C → Set

This gives rise to a special class of functors C → Set.

Definition 2.1.15 Let C be a category. A functor F : C → Set is called representable, if it
is naturally isomorphic to a functor yc for an object c. In this case we say that the object c
represents the functor F and call c a representing object.
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Examples 2.1.16

1. Let F : Ring → Set be the forgetful functor that sends every ring to its underlying set.
Then we have by Theorem 1.1.12 for every ring R the isomorphism of sets

HomRing(Z[X], R) → F (R)
ϕ 7→ ϕ(X) ,

These morphisms are compatible with ring morphisms and thus define a natural isomor-
phism. Thus, the polynomial ring Z[X] represents the forgetful functor from rings to
sets.

2. Let F : Ring→ Set be the functor that sends ring every R to its set of units R×. This func-
tor is represented by the quotient ring Z[X, Y ]/(XY −1). Indeed we have an isomorphism
of sets

HomRing(Z[X, Y ]/(XY − 1), R) → R×

ϕ 7→ ϕ(X) ,

where the inverse sends r ∈ R× to the ring morphism defined by X 7→ r, Y 7→ r−1.

Here we have examples of an important technique of constructing objects in categories,
namely by first constructing a functor to Set and then checking that it is representable. One
would then also like to know that the representing object is unique. This is a consequence of
the following lemma on functors into the category Set, which plays a central role in category
theory:

Theorem 2.1.17 [Yoneda lemma]

1. Let C be a category, F : C → Set a functor, and c ∈ C an object. Then the natural
transformations Hom(yc, F ) form a set.

2. Consider the map

Hom(yc, F ) → HomSet(yc(c), F (c))
def
= HomSet(HomC(c, c), F (c)) → F (c)

N 7→ Nc 7→ Nc(idc) ,

where the first arrow is the projection of the natural transformation onto its component
at c and the last arrow is given by evaluation at idc. This map is a bijection of sets.

Proof. If N : yc → F is a natural transformation, then by definition we have a commutative
diagram for every morphism f : c→ c′ in C, namely:

yc(c)
yc(f) //

Nc
��

yc(c
′)

Nc′
��

F (c)
F (f) // F (c′)

If we track the image of idc ∈ yc(c) = HomC(c, c) through the diagram and use for the path
that first goes horizontally and then vertically that

Nc′(yc(f)(idc)) = Nc′(f∗idc) = Nc′(f)

we obtain the equation
Nc′(f) = F (f)(Nc(idc))
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for every f ∈ Hom(c, c′) = yc(c
′). Thus the natural transformation N depends only on element

Nc(idc) ∈ F (c), which proves the injectivity of the Yoneda map.
Conversely, every element x ∈ F (c) for a fixed object c of the category C determines a map

of sets
HomC(c, c

′) = yc(c
′) → F (c′)
f 7→ xN(f) := F (f)(x) ,

which assembles to a natural transformation xN : yc → F of functors C → Set.

The Yoneda lemma has many consequences. First we use it in the following observation:

Observation 2.1.18

1. Suppose the functor F is also of the form F = yc′ = Hom(c′,−). Then we find bijections

Hom(c′, c) ∼= F (c) ∼= Hom(yc, yc′)

The morphism f ∈ Hom(c′, c) is sent to the natural transformation yc → yc′ , which acts
on the object d by

f ∗ : Hom(c, d) → Hom(c′, d)
ϕ 7→ ϕ ◦ f

We have thus found a functor
Copp → [C, Set]

with c 7→ yc. This functor is fully faithful; it is called the Yoneda embedding. Its image
are the representable functors.

2. Thus the functors Hom(c′,−) and Hom(c,−) are isomorphic, if and only if the objects c
and c′ are isomorphic. In particular: if a functor F : C → Set is representable, then the
representing object is unique up to isomorphism.

3. Applying the same observation to the functor

Hom(−, d) : Copp → Set

we find that the functors Hom(−, d) and Hom(−, d′) are isomorphic if and only if the
objects d and d′ are isomorphic. We obtain a second Yoneda embedding

C → [Copp, Set]

that sends c 7→ HomC(−, d). It maps objects on C to presheaves on C.

2.2 Limits and colimits

Definition 2.2.1
Let Γ be an (essentially) small category and C be a category.

1. A functor F : Γ→ C is called a diagram of shape Γ with values in C. The functor category
[Γ, C] is called the category of diagrams of shape Γ with values in C. Its morphisms are
just natural transformations.
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2. A cone to a diagram F is a pair (N,ψ), consisting of an object N ∈ C, together with a
family (ψγ : N → F (γ))γ∈Γ of morphisms indexed by the objects γ ∈ Γ, such that for
every morphism f : γ → γ′ in Γ, we have F (f) ◦ ψγ = ψγ′ .

N
ψγ′

""

ψγ

||
F (γ)

F (f)
// F (γ′)

The object N ∈ C is called the summit or the apex of the cone.

3. A limit of the diagram F : Γ → C is a cone (L, π) to a diagram F with the universal
property that for any other cone (N,ψ) to F there exists a unique morphism u : N → L
such that πγ ◦ u = ψγ for all γ ∈ Γ.

N

u
��

ψγ′

��

ψγ

��

L
πγ′

""

πγ

||
F (γ)

F (f)
// F (γ′)

We write L = limΓ F .

4. The definition of a cocone and a colimit is dual, i.e. obtained by reversing arrows. The
object in a cocone is also called the nadir. We write colimΓX for the colimit.

Categorical language generally follows the design principle that an X in C corresponds to a
co-X in Copp.

Examples 2.2.2 1. Let Γ be a discrete category, i.e. a category with only identity arrows,
cf. Examples 2.1.3.9. A diagram of shape Γ is then simply a family of objects (Vγ)γ∈Γ

indexed by Γ. A cone with apex N is then a family of morphisms (ψγ : N → Xγ)γ∈Γ.
Assume that the limit (L, π) of this diagram exists. By definition, given any object N
and family of maps (ψγ : N → Xγ)γ∈Γ, there is a unique morphism u : N → L such that
πγ ◦ u = ψγ. Denoting the limit by L =

∏
γ Xγ, this amounts to an isomorphism

HomC(Y,
∏

γ Xγ)
∼=−→

∏
γ HomC(Y,Xγ)

u 7→ (πγ ◦ u)γ∈Γ

which is just the universal property we encountered for products of modules.

2. Dually, the colomit C is a cocone, i.e. comes with structure morphisms (ιγ : Xγ → C)γ∈Γ

such that we get an isomorphism isomorphism

HomC(
∐

γ Xγ, Y )
∼=−→

∏
γ HomC(Xγ, Y )

u 7→ (u ◦ ιγ)γ∈Γ

This leads to the following definition:
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Definition 2.2.3 Let Γ be a discrete category and X : Γ → C a diagram of shape Γ. This
is the same as a family of objects indexed by the set of objects of Γ. We write for diagrams of
shape Γ ∐

γ

Xγ := colimΓX and
∏
γ

Xγ := lim
Γ
X

and call the limit a product and the colimit a coproduct of the family (Xγ)γ∈Γ of objects in C.

Remarks 2.2.4

1. There are categories, in which not all products and coproducts exist. But if they exist,
then their universal properties imply that they are unique up to unique isomorphism.
This justifies giving a (co)product a definite notation.

2. The coproduct in the category Set of sets is disjoint union. The product in the category
Set of sets is the Cartesian product.

3. In the category of R-modules the direct sum and the direct product from Definition 1.2.1
are exactly the categorical coproduct resp. product, see Remark 1.2.2 (2).

4. The Cartesian product of rings is also a categorical product in the category of rings. The
tensor product is the coproduct in the category of commutative rings, although not in the
category of all rings, cf. Remarks 1.2.12.5.

Examples 2.2.5 1. Consider the empty family and assume that the corresponding co-
product

∐
∅ exists in a category C. Given any object M ∈ C, there is a single cocone

over the diagram indexed by ∅ with nadir M , namely the empty family. By the universal
property of the coproduct, there exists a uniquely determined morphism

∐
∅ → M . This

shows that
∐
∅ is an initial object in C. This is an object 0 ∈ C, from which there exists

a unique morphism to every object of C.

2. Dually, a product
∏
∅ with values in C is a terminal object of C.

3. The terminal object in the category Set of sets is any singleton set {∗} with one element.
The empty set is an initial object. In the category R−Mod, the zero module is both an
initial and terminal object.

Definition 2.2.6 Consider a diagram of the shape

N
f //
g
//M

with values in any category C, i.e. M,N ∈ C. We say that f, g is a pair of parallel morphisms.

1. We call the limit of this diagram, if it exists, the equaliser or difference kernel of the
parallel pair of morphisms f and g.

2. We call the colimit of this diagram, if it exists, the coequaliser or difference cokernel of
the parallel pair of morphisms f and g.

Remarks 2.2.7 1. Spelling out the definition of a limit explicitly, we see that the difference
kernel is a morphism Eq→ N , such that for any diagram

Eq // N
f //
g
//M

X

h

OO

∃!h̃

``
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with a morphism h : X → N such that f ◦ h = g ◦ h, there exists a unique morphism
h̃ : X → Eq such that the left triangle commutes. If Hom(x, y) is even an abelian group
for all objects x, y ∈ C, then the difference kernel is just the kernel of the difference f − g
of the morphisms.

2. Dually, the coequalizer is a morphism M → Coeq, such that for any diagram

N
f //
g
//M

h
��

// Coq

∃!h̃||
X

with a morphism h such that h◦f = h◦g, there exists a unique morphism h̃ : Coeq→ X.
If Hom(x, y) is even an abelian group for all objects x, y, then the difference kernel is just
the cokernel of the difference f − g of the morphisms.

3. The tensor product of a right R-module (M,ρ) and a left R-module (N, λ) is the coequal-
izer of the two morphisms

ρ⊗Z idN , idM ⊗Z λ : M ⊗Z R⊗Z N →M ⊗Z N

of abelian groups.

4. Dual to the notion of a ring is the notion of a coring. A ring is a monoid in Z-Mod.
A coring is a monoid in the dual category, or, more explicitly, an abelian group C with
comultiplication ∆ : C → C ⊗ C that is coassociative and counital. Dual to left modules
is the notion of a left comodule, i.e. an abelian group M with a coaction δ : M → C⊗M .
The cotensor product of a right and left comodule is then defined as an equalizer of the
coactions,

ρ⊗Z idN , idM ⊗Z λ : M ⊗Z N →M ⊗Z ⊗C ⊗Z N

We now discuss an important class of limits and colimits that we will later: pullbacks and
pushouts.

Examples 2.2.8

1. Consider the partially ordered set Ω = {0, 1, 2} with 0 < 1, 0 < 2. It gives rise to a
category Γ with non-identity arrows

γ0
//

��

γ1

γ2

A Γ-shaped diagram in a category C is called a span in C:

N
f //

g
��

A

B

Here, we have A,B,N ∈ C. The category [Γ, C] is the category of spans in C.
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2. The category of cospans in a category C is defined as [Γopp, C]. A cospan thus is a diagram
of the form

Γ̂ := X

f
��

Y g
//M .

(∗)

with X, Y,M ∈ C.

Definition 2.2.9 1. We call the limit of a cospan in C the pullback of the cospan.

2. We call the colimit of a span in C the pushout of the span.

Remarks 2.2.10 1. We describe the universal property of the pullback Z of the cospan
Γ̂ in (∗) that characterizes it up to unique isomorphisms (provided it exists). For every
object W together with morphisms W → X and W → Y such that the diagram of solid
arrows commutes, there exists a unique morphism W → Z in C, such that the diagram

W
∃!

  ��

**

Z //

��

X

��
Y //M

For a pullback, we also write Z = X ×M Y = X f ×g Y or

Zc //

��

X

f
��

Y g
//M

2. Dually we write for the pushout of a span

N
f //

g
��

A

��
B //W

denoted W = A tN B. It has the dual universal property.

Remarks 2.2.11

1. Let M be an object in a category C. The over category C ↓M of objects over M is defined
as the category, whose objects are pairs (X, fX), with X an object in C and a morphism
fX : X →M , and whose morphisms are commuting diagrams

X

fX   

ϕ // Y

fY~~
M

The pullbacks · ×M · are precisely the products in over category over M . They are also
called fibre products over M .
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2. In the categories Set,Top,Ab, R−Mod the pullback is given by

X ×M Y = X f ×g Y = {(x, y) |x ∈ X, y ∈ Y, f(x) = g(y)} . (∗)

The structure morphism X×MY → X of the pullback is the (restriction of the) projection
(x, y) 7→ x onto the first component, the structure morphism X ×M Y → Y is the
(restriction of the) projection (x, y) 7→ y. The morphism Z → X ×M Y , induced by two
suitable morphisms ϕ : Z → X and ψ : Z → Y is given by z 7→ (ϕ(z), ψ(z)).

The pullback (∗) is realized as the equalizer of a product. In the categories
Set,Top,Ab, R−Mod the pullback is thus the difference kernel

X ×M Y = X f ×g Y = Eq( X × Y
f◦pr1 //

g◦pr2
//M ) .

3. One defines the category N ↓ C of objects under N as the category, whose objects are
pairs (X, f) with f : N → X. The pushouts are exactly the coproducts in the under
category. They are also called amalgamated sums.

4. Dually, the pushout can be realized as the coequaliser of the maps

A tN B := CoEq( N
ι1◦f//

ι2◦g
// A
∐
B )

into the coproduct, if it exists.

In the category R−Mod, the pushout is thus given by the quotient module

A tN B = A⊕B/(f(n), 0) ∼ (0, g(n)) .

The structure morphism A→ AtN B is the injection a 7→ [a, b] into the first component.
The morphism AtN B → Z, induced by two suitable morphisms f : A→ Z and g : B →
Z, is given by [a, b] 7→ f(a) + g(b). It is instructive to consider why it is well-defined on
the quotient.

It should now be clear that it is important to be able to check the existence of limits and
colimits. We start with the definition:

Definition 2.2.12

1. A category is called (finitely) cocomplete, if every (essentially finite) diagram in C has a
colimit.

2. A category C is called (finitely) complete, if every (essentially finite) diagram in C has a
limit.

We can now explain a result which ensures the existence of colimits, generalizing the con-
struction in Remarks 2.2.11.2 and for pullbacks and pushouts:

Proposition 2.2.13
Let C be a category and X : Γ→ C a diagram in C of the shape Γ. If in C difference cokernels
and coproducts for the sets of objects and morphisms of Γ exist, then X has a colimit which
can be expressed as a difference cokernel.

A dual statement holds for limits.

54



Proof. By assumption, the two coproducts∐
γ1

f→γ2

X(γ1) and
∐
γ∈Γ

X(γ)

indexed by morphisms and objects of Γ exist. By the universal property of the first coproduct,

indexed by morphisms in Γ, there exist a unique morphism α such that for any γ1
f→ γ2 the

diagram

X(γ1)
X(f) //

ι(f)

��

X(γ2)

ι(γ2)

��∐
γ1→γ2 X(γ1) α

//
∐

γ∈ΓX(γ)

commutes. Similarly, there exists a unique morphism β such that for all γ1
f→ γ2 the diagram

X(γ1)
ι(γ1)

&&ι(f)xx∐
γ1→γ2 X(γ1)

β
//
∐

γ∈Γ0
X(γ)

The difference cokernel C of ∐
γ1→γ2 X(γ1)

α //
β

//
∐

γ X(γ)

comes with maps

X(γ)
ι(γ)//
∐

γ1→γ2 X(γ1)
α //
β
//
∐

γ∈ΓX(γ) // C

which turn C into a colimit for the diagram X. Indeed, a morphism C → T is the same as a
morphism ϕ :

∐
γ X(γ)→ T such that ϕ◦α = ϕ◦β. This is the same as a family of morphisms

(ϕγ : X(γ)→ T )γ∈Γ such that

ϕγ1 = ϕγ2 ◦X(γ1
f→ γ2)

for all morphisms γ1
f→ γ2 in Γ. The latter is just a cocone of the diagram X.

Examples 2.2.14 The following categories are complete and cocomplete: Set, Ab, Grp, R-
mod and Top, since they have difference (co-)kernels and (co-)products. The categories of finite
sets, finite abelian groups and finite-dimensional vector spaces are finitely complete and finitely
cocomplete, but neither complete nor cocomplete.

We will need more properties of pullbacks later in the lecture. Hence we work a bit more
with them:

Remarks 2.2.15 1. If pullbacks exist, they yield a functor from the category of cospans
in C to C. On objects, this functor is just a choice of pullback. To define this functor on
morphisms, we oberseve that a morphisms of cospans is a commuting diagram

X ×M Y //

��

X

�� !!
Y //

$$

M

!!

X ′

��
Y ′ //M ′
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given by the dashed morphisms. The outer arrows compose to equal morphismsX×MX →
Y → Y ′ →M ′ and X ×M X → X → X ′ →M and thus, by the universal property of the
pullbacks X ′ ×M ′ Y ′, determine a unique morphism X ×M Y → X ′ ×M ′ Y ′ between the
pullbacks.

2. If pullbacks exist, then any morphism M
g→M ′ yields a functor of over categories

g∗ : C ↓M ′ → C ↓M
that sends the object X →M ′ to the object X ×M ′ M →M in the category C ↓M :

g∗(X) = X ×M ′ M //

��

X

��
M

g //M ′

We then call g∗ the pullback functor associated with the morphism g.

3. If both small squares in the diagram

X2
//

��

X1
//

��

X0

��
M2

//M1
//M0

are pullback diagrams, then so is the big one. This is called pasting of pullback diagrams:
we have

(X0 ×M0 M1)×M1 M2
∼= X0 ×M0 M2 .

To see this we consider the diagram

Y

(( ''%%

--

(X0 ×M0 M1)×M1 M2
//

��

X0 ×M0 M1
//

��

X0

��
M2

f1 //M1
f0 //M0

for an arbitrary object Y and let morphisms Y → X0 and Y → M2 be given, such that
the outer pentagon commutes. The pullback property of the right square, applied to the

morphisms Y → X0 and Y →M2
f1→M1 yields a unique morphism Y → X0 ×M0 M1. To

this and to Y →M2 we now apply the pullback property of the left square and obtain a
unique morphism Y → (X0 ×M0 M1)×M1 M2, which shows that also the big rectangle is
a pullback diagram.

4. This result has an important reinterpretation in terms of pullback functors: given mor-

phisms M2
f1→ M1

f0→ M0, there exists a distinguished natural isomorphisms of pullback
functors:

(f0 ◦ f1)∗ ⇒ f ∗1 ◦ f ∗0 .
Note that here one typically does not have an equality of functors. One can show, however,
that a certain coherence condition holds, namely that the following diagram of natural
transformations commutes

(f0 ◦ f1 ◦ f2)∗

��

+3 f ∗2 ◦ (f0 ◦ f1)∗

��
(f1 ◦ f2)∗ ◦ f ∗0 +3 f ∗2 ◦ f ∗1 ◦ f ∗0 .
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5. All statements about pullback have dual analogs for the pushout.

More generally, we have

Proposition 2.2.16 Suppose that a category C has all Γ-shaped limits. Then a choice of
limit for each diagramm defines a functor

lim
Γ

: [Γ, C]→ C .

Proof. On objects, the functor is defined by the choice of limits. Given two diagrams F,G :
Γ → C and a natural transformation α : F → G, which is just a morphism of diagrams, the
limit cone λ : limΓ F → F defines a cone

lim
Γ
F → F

α→ F ′

with summit limΓ F over the diagram F ′. It factorizes by the universal property of limΓ F
′

uniquely to a morphism limΓ F → limΓ F
′ which we call limΓ(α).

We finally discuss the interaction of functors with limits and colimits:

Definition 2.2.17

1. A functor F : C → D is called cocontinuous (or preserves colimits), if for any universal
cocone X → ∆Γ over a diagram ∆Γ in C the induced cocone F (X)→ F (∆Γ) is universal
as well.

2. The notion of a continuous functor is dual.

Remarks 2.2.18

1. A cocontinous functor can be characterized equivalently by the condition that for any
diagram X in C with a colimit colim(X), also the diagram F (X) in D has a colimit and
the canonical morphism

colim(F (X)) → F (colim(X))

is an isomorphism.

2. The forgetful functor U : Ab→ Set is not cocontinous. Indeed, the initial object, i.e. the
colimit of the empty diagram as explained in Examples 2.2.2.1, is the trivial group for
Ab and the empty set for Set and thus not preserved. Alternatively, we can also look at
a coproduct of two elements: the map

U(A1) t U(A2)→ U(A1 t A2) = U(A1 ⊕ A2) = U(A1)× U(A2)

is not surjective in general and hence not an isomorphism.

Forgetful functors can not be expected to be cocontinuous in general. (The forgetful
functor Top→ Set is continuous, though.)

3. If Γ is a small category, then the functor category Γ̂ := [Γopp, Set] is cocomplete [B16,
Satz 9.4.13]. The Yoneda embedding Γ → Γ̂ induces [B16, Proposition 9.4.13] for any
cocomplete category D an equivalence of categories

Func(Γ̂,D) ∼= [Γ,D] .

Here Func denotes the full subcategory of cocontinuous functors.
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4. Any representable functor Copp → Set is continuous. For any diagram X ∈ [Γ, C] with
colimit colimΓX ∈ C, the canonical map

Hom(colimΓX, c) → lim
Γ

Hom(X, c)

is an isomorphism for any c ∈ C. (Note that a colimit in C is a limit in Copp.) Indeed, the
limit in the category Set is a subset of the product

∏
i∈I X(i) consisting of tuples (xi)

such that X(i→ j)xi = xj.

Similarly, the canonical map

HomC(c, lim
Γ
X) → lim

Γ
Hom(c,X)

is an isomorphism for any c ∈ C.

We finally mention a specific type of limit and colimit and one application to the theory of
finite-dimensional algebras.

Remark 2.2.19 1. We first introduce the notion of an end and of a coend of a functor

F : Copp × C → D ,

see [McL71, Ch. IX.4].

A dinatural transformation F ⇒x from functor F to an object x∈D is a family
ϕ= {ϕc : F (c, c)→ x}c∈C of morphisms satisfying

F (c′, c)
F (f,c) //

F (c′,f)
��

F (c, c)

ϕc

��
F (c′, c′) ϕc′

// x

for all f ∈HomC(c, c
′).

2. A coend (z, ι) for a functor F : Copp×C → D is an object z ∈D together with a dinatural
transformation ι from F to z having the universal property that for any dinatural trans-
formation ϕ : F ⇒x to some x∈D there is a unique morphism κ = κ(ϕ) ∈ HomD(z, x)
such that ϕc =κ ◦ ιc for all c ∈ C.

F (c′, c)
F (f,c) //

F (c′,f)
��

F (c, c)

ιc

��
ϕc

��

F (c′, c) ιc′
//

ϕc′
44

z
κ

##
x

3. The notion of an end for a functor F : Copp×C → D is defined dually. We often suppress the
universal dinatural transformation and denote the coend and end of a functor F : Copp ×
C → D, as well as the underlying objects, by

∫ c∈C
F (c, c) and by

∫
c∈C F (c, c), respectively.
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4. Let K be a field and A and B be finite-dimensional K-algebras and G : A-mod→ B-mod
a linear functor, i.e. a functor that consists of K-lienar maps on the Hom-spaces, cf.
Definition 3.1.8. Consider the functor

G̃ : A-modfd × A-modopp
fd −→ B − bimod− A

m× n 7−→ G(m)⊗K n∗

where we use the vector space dual to turn a left module m into a right module m∗. Its
end is given as a B-A-bimodule by∫

m∈A-mod

G(m)⊗K m∗ = G(A)

with the natural B-A-bimodule structure on G(A). Note that G(A) is a B left module
as the image of the regular left A module AA under the functor G : A−Mod→ B-Mod.
For each a ∈ A, the endomorphism ra : A → A with a′ 7→ a′ · a of the regular left
module gives morphisms G(ra) : G(A)→ G(A) which endow G(A) with the structure of
a right A module and even an B-A-bimodule. For the dinatural family, we refer to [FSS20,
Proposition 2.8] where also a proof is given. Specializing G to the identity functor, we
find the following Peter-Weyl theorem:∫

m∈A-mod

m⊗K m∗ ∼= AAA

The bimodule A is also characterized categorically by the fact that A⊗AB ∼= B ∼= B⊗AA
for any A-bimodule B. Here, we have constructed it in a purely categorical way from the
category of all finite-dimensional A-modules.

5. Similarly, the coend of the functor G̃ is∫ m∈A-mod

G(m)⊗K m∗ = G(A∗) (1)

In particular, we have ∫ m∈A-mod

m⊗K m∗ ∼= AA
∗
A

of A-bimodules. The categorical characterization of the bimodule A∗ is more subtle [?].

2.3 Universal properties and adjoint functors

We now consider universal properties in an abstract setting. To access a good example, we once
again use the notion of a product which is characterized by the isomorphisms

HomC(Y,
∏
γ

Xγ)
∼=−→
∏
γ

HomC(Y,Xγ)

We consider the direct sum and the direct product of a family (Xλ)λ∈Λ of modules over a
given ring R, i.e. X ∈ D = R-mod, in a more formal context. Let

C :=
∏
λ∈Λ

D = [Λ,D]

denote the product category from Definition 2.1.4, whose objects are Λ-tuples of modules. A
morphism (Xλ)λ∈Λ → (Yλ)λ∈Λ is a Λ-tuple of R-module homomorphisms fλ : Xλ → Yλ.
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In the universal properties of the direct sum and the product a arbitrary fixed object appears
in all factors of a product of Hom-sets. We thus introduce the diagonal functor

∆: D → C
X 7→ (X,X, . . . , X) = (X)λ∈Λ

that sends an object X to the constant family and a morphism X
f→ Y to the constant family

of morphisms, ∆(f) = (f)λ∈Λ.
Suppose that all direct sums and all products are defined in the category D. For example,

this is the case for D = R−Mod for a ring R. The direct sum resp. the direct product of modules
and module homomorphisms yields functors∏

,
∐

: C → D .

The universal property of the coproduct says that for every object c ∈ C — i.e. for every family
of objects in D — and for every object d ∈ D there exist isomorphisms of Hom-sets:

HomD(
∐

c, d)
∼→ HomC(c,∆d) ;

in the case of the product, on the other hand, we have isomorphisms

HomD(d,
∏

c)
∼→ HomC(∆d, c) .

This leads to the following definition:

Definition 2.3.1

1. Let C and D be arbitrary categories. A functor F : C → D is called left adjoint to a functor
G : D → C if for any two objects c in C and d in D there exists an isomorphism of sets

Φc,d : HomC(c,Gd)
∼→ HomD(Fc, d)

with the following natural property:

For every morphism c′
f→ c in C and d

g→ d′ in D consider for ϕ ∈ HomD(Fc, d) the
morphism

Hom(Ff, g)(ϕ) := Fc′
Ff→ Fc

ϕ→ d
g→ d′ ∈ HomD(Fc′, d′)

and for ϕ ∈ HomC(c,Gd) the morphism

Hom(f,Gg)(ϕ) := c′
f→ c

ϕ→ Gd
Gg→ Gd′ ∈ HomC(c

′, Gd′) .

The natural property is then the compatibility requirement on morphisms, namely that
the diagram

HomC(c,Gd)

Φc,d
��

Hom(f,Gg) // HomC(c
′, Gd′)

Φc′,d′

��
HomD(Fc, d)

Hom(Ff,g)
// HomD(Fc′, d′)

commutes for all morphisms f, g.

2. In the case we write F a G and say that the functor G is right adjoint to F .

Examples 2.3.2
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1. We have seen that the coproduct is a left adjoint functor to the diagonal functor, i.e.∐
a ∆, and that the product is a right adjoint functor to the diagonal functor, i.e.

∆ a
∏

.

2. We consider the forgetful functor

U : R−Mod→ Set ,

that sends every vector space to its underlying set. Its left adjoint functor is the the
functor that assigns to a set the free module on the set

F : Set→ R−Mod ,

that sends a set M to the free R-module R(M) that was introduced in Remark 1.3.2. It
has a canonical basis labelled by the elements of M . A map f : M → N of sets is sent by
F to the linear map F (M)→ F (N) that maps the basis element δm with m ∈ M of the
canonical basis of F (M) to the basis element δf(m) of the canonical basis of F (N).

For every set M and every R-module V we then have an isomorphism of sets

ΦM,V : HomSet(M,U(V )) → HomR(F (M), V )
ϕ 7→ ΦM,V (ϕ)

with
ΦM,V (ϕ)(

∑
m∈M

λmm) :=
∑
m∈M

λmϕ(m) .

In particular, we find that for every K-vector space V , the one-element set
HomSet(∅, G(V )) has to be isomorphic to the space of R-module morphisms
HomR(F (∅), V ). The only R-module that admits only a single linear map into any K-
vector space V is the zero vector space, F (∅) = {0}. In this sense, the zero vector space
is spanned by the empty set.

3. A similar example is the forgetful functor U : Gr → Set, that sends groups to their
underlying sets. Here a left adjoint functor exists, namely the functor F that sends a set
to the free group generated by it.

The category Ab of abelian groups is a subcategory of the category Gr of all groups. We
can thus restrict the forgetful functor to Ab. The left adjoint functor is then a functor
F ′ : Set → Ab that sends a set to the free abelian group generated by it. It is different
from from the left adjoint functor described before. For example, the free abelian group
on two elements is just Z2 while the free group on two elements x, y consists of all word
in the letters {x, y, x−1, y−1} modulo the relations xx−1 = x−1x = e = yy−1 = y−1y.

We have thus learnt that freely generated objects may be defined as images of the left
adjoint to a forgetful functor.

4. There are also forgetful functors that have no left adjoint functor. An example is the
forgetful functor U from the category of fields into the category of sets. If there were a
left adjoint functor, then it would assign a field K(M) to each set M . In particular we
could choose M = ∅, for which we would have to find a field K = K(∅), such that for
every field L there exists a bijection of sets

HomField(K,L) ∼= HomSet(∅, U(L)) ∼= ?.
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Since non-trivial field homomorphisms are injective, the sought-after field would be a
subfield of every field. But such a field does not exist: the prime field depends on the
characteristic of L. (In other words: the category of sets has an initial object, the empty
set. In the category of all field there does not exist an initial object.) Thus there is no
notion of “freely generated field”.

5. The inclusion functor I : Ab → Grp of abelian groups into all groups has a left adjoint
functor, namely (−)ab : Grp → Ab, that sends a group G to its abelianization Gab :=
G/[G,G]. This is because we have:

HomGrp(G, I(A)) ∼= HomAb(Gab, A) .

(This will be an exercise.)

6. There is a forgetful functor U from categories (with functors as isomorphisms) to the
category of oriented graphs. The vertices of the graph U(C) are the objects of C; the
edges are the morphisms, except for identity morphisms. We thus forget identities and
composition. Its left adjoint assigns to a graph Γ the free category F (Γ). Its objects are
the vertices of graphs, the morphisms are paths, i.e. finitely many composable edges. For
details, see [McL71, Chapter II.7].

If a functor admits an adjoint, then it enjoys additional properties, as we will see for example
in Corollary 2.3.6.

We consider another example relating modules over different rings:

Example 2.3.3 Let R, S be (unital) rings and φ : R → S a ring homomorphism. (If φ
injective, then R is a subring of S.) Then pullback resp. restriction of scalars as in example
2.1.6.2 defines a forgetful functor

U : S−Mod→ R−Mod .

We will study its adjoint functors.

1. To get a left adjoint functor F : R−Mod → S−Mod to U , we define it on objects by
F (M) = S ⊗R M , where S is considered as a right module over R via pullback along φ
and the left action of S on S⊗RM is defined by the multiplication in S, i.e. s′.(s⊗m) := (s′·
s)⊗m. On morphisms we set F (f) = idS⊗R f . This functor is called extension of scalars
or induction.

To see that F is in fact a left adjoint functor of U , we consider for M ∈ R−Mod and
N ∈ S−Mod the following two morphisms of abelian groups:

HomR(M,U(N))
∼→ HomS(S ⊗RM,N)

f 7→ (s⊗m 7→ s.f(m))

and
HomS(S ⊗RM,N)

∼→ HomR(M,U(N))
g 7→ (m 7→ g(1S ⊗m)) .

It is straightforward to check that they are mutually inverse and satisfy the naturality
property from Definition 2.3.1.
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2. To find the right adjoint functor G : R−Mod → S−Mod for the pullback functor U :
S−Mod→ R−Mod, we define on objects

G(M) = HomR(S,M).

Here S is considered as a left R-module by pullback along φ; G(M) is an S-left module
via the right action of S on itself, (s.ϕ)(s′) := ϕ(s′ · s) for ϕ ∈ HomR(S,M). The functor
G is called coinduction.

To see that G is in fact a right adjoint functor of U , we consider for M ∈ R−Mod and
N ∈ S−Mod the following two morphisms of abelian groups

HomR(U(N),M)
∼→ HomS(N,HomR(S,M))

f 7→ ( n 7→ (s 7→ f(sn)))

and
HomS(N,HomR(S,M))

∼→ HomR(U(N),M)
g 7→ (n 7→ g(n)(1S)) .

Again it is straightforward to check that they are mutually inverse and satisfy the natu-
rality property from Definition 2.3.1.

3. Let R, S be rings and B a S −R-bimodule. Then we have a functor

B̃ : R−Mod → S−Mod
N 7→ B ⊗R N

that is left adjoint to the functor

S−Mod → R−Mod
Q 7→ HomS(B,Q)

.

Tensor products and Hom-functors are again adjoint.

Sometimes it is useful to have a different formulation of the definition of adjoint functors:

Observation 2.3.4
1. Let F a G be adjoint functors with F : C → D and G : D → C. From the definition we

deduce the existence of isomorphisms

HomC(G(d), G(d)) ∼= HomD(F (G(d)), d)

and
HomD(F (c), F (c)) ∼= HomC(c,G(F (c))).

The image of the identity on G(d) resp. F (c) under these isomorphisms assemble to
natural transformations

ε : F ◦G→ idD and η : idC → G ◦ F .

(Note the distinct ordering of the functors G and F .) These have the property, that for
all objects c in C and d in D the morphisms

G(d)
ηG(d)−→ (GF )G(d) = G(FG)(d)

G(εd)−→ G(d)

and

F (c)
F (ηc)−→ F (GF )(c) = (FG)F (c)

εF (c)−→ F (c)

are identity morphisms. These identities are called triangle identities. For a proof of these
statements we refer to [McL71, Chapter IV]. We mention that η is called the unit and ε
the unit of the adjunction.
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2. Conversely, the natural transformations ε and η determine the adjunction isomorphisms
via

HomC(c,G(d))
F→ HomD(F (c), F (G(d))

(εd)∗→ HomD(F (c), d)

and the inverse by

HomD(F (c), d)
G→ HomC(G(F (c)), G(d))

η∗c→ HomC(c,G(d)) .

3. Consider a pair of adjoint functors F a G; it yields an equivalence of categories if and
only if ε an η are natural isomorphisms. This is even an adjoint equivalence.

4. One can show that any equivalence F : C → D with quasi-inverse G : D → C and
isomorphisms

η : idC
∼→ G ◦ F and ε : F ◦G ∼→ idD

can be promoted to an adjoint equivalence, in which the natural isomorphisms satisfy the
triangle identities, by replacing either one of the originally specified natural isomorphisms
by a new unit or counit. For a proof, we refer to [R16, Proposition 4.4.5].

5. Consider the adjunction I a U between the forgetful functor U : R−Mod → Set and
the free functor F : Set → R−Mod. Then the component of the counit at a set M is a
morphism ηM : M → U(F (M)) of sets into the set undeflying the free module F (M). It
exhibts the elements of M as a basis of F (M). Notice that the morphism ηM is far from
being an isomorphism of sets.

We are now ready to prove the following theorem.

Proposition 2.3.5
Any left adjoint functor is cocontinous, i.e. preserves colimits. Any right adjoint functor is
continuous, i.e. preserves limits.

Proof. Given an adjunction F a G, with F : C → D and G : D → C, we have a natural
isomorphism

Φ : HomD(F−,−)
∼−→ HomC(−, G−) .

Let X be a diagram of shape Γ in C with universal cocone (Xγ → C)γ∈Γ. Now let (F (Xγ) →
Y )γ∈Γ be any cocone of the diagram F ◦ X of shape Γ in D. Since Φ is natural, we obtain a
cocone (Xγ → G(Y ))γ∈Γ over the original diagram in C.

The universal property of the universal cocone gives us a unique morphism C → G(Y ) such
that Xγ → C → G(Y ) equals Xγ → G(Y ) for all γ ∈ Γ. Via Φ−1, this gives a unique morphism
F (C) → Y such that F (Xγ) → F (C) → Y equals F (Xγ) → Y . Thus F (Xγ) → F (C) is a
universal cocone. By Remarks 2.2.18.1, F is cocontinuous

Note that this proposition allows us to deduce from Example 2.3.3 again that the functor
B ⊗R − is cocontinuous and that the functor HomR(B,−) is continuous

Corollary 2.3.6 Let F : C → D be a functor that admits a left adjoint functor G. Then F
commutes with products. If G : D → C is a functor that admits a right adjoint functor F , then
G commutes with coproducts.
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Proof. This follows from the fact that products are specific limits. We go through the argument
in more detail: For every object d of D, there are distinguished isomorphisms

HomD(d, F (
∏

i ci))
∼= HomC(G(d),

∏
i ci) since G a F

∼=
∏

i HomC(G(d), ci) univ. prop. of direct product
∼=

∏
i HomD(d, F (ci)) since G a F

∼= HomD(d,
∏

i F (ci)) univ. prop. of direct product.

It is straightforward to check that these distinguished isomorphisms assemble to a natural
transformation from the functor

HomD(−, F (
∏
i

ci)) : Dopp → Set

to the functor
HomD(−,

∏
i

F (ci)) : Dopp → Set.

Thus we have an isomorphism of the functors HomD(−, F (
∏

i ci)) and HomD(−,
∏

i F (ci))
and thus, by Observation 2.1.18.1 that is based on the Yoneda lemma, that F (

∏
i ci)
∼=
∏

i F (ci)
holds. The proof for coproducts is analogous.

Here is another consequence of the Yoneda lemma 2.1.17:

Theorem 2.3.7 If a functor G : D → C admits a left adjoint functor, then this left adjoint
functor is uniquely determined up to natural isomorphism. Analogously, right adjoint functors
are determined uniquely up to natural isomorphisms, if they exist.

Proof. Let F, F ′ : C → D be two left adjoints to G : D → C. Then for all objects c ∈ C and
d ∈ D there exist distinguished isomorphisms

HomD(F (c), d) ∼= HomC(c,G(d)) ∼= HomD(F ′(c), d) .

These isomorphisms again satisfy the naturality property, and so we obtain a natural iso-
morphism yF (c) → yF ′(c), which comes from an isomorphism F ′(c) → F (c) by Observa-
tion 2.1.18.

We finally relate the existence of limits and colimits of diagrams of shape Γ to adjoints of
the diagonal functor for Γ:

Proposition 2.3.8 A category C admits all limits of all diagrams indexed by a small category
Γ, if and only if the constant diagram functor ∆ : C → [Γ, C] admits a right adjoint. Dually, a
category admits all colimits of all Γ-shaped diagrams if and only if ∆ admits a left adjoint.

Proof. These statements follow directly from the definition of a limit: Hom(∆(c), F ) is the set
of natural transformations from the constant diagram to the diagram F : Γ → C. This is the
set of cones with summit c. The limit limΓ F has the property

Hom(∆(c), F ) ∼= HomC(c, lim
Γ
F )

which is natural in c if the limit exists. One then checks that this allows to extend lim to a
limit functor. For details, see [R16, Proposition 4.5.1].
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Next we will discuss universal properties in the language of categories and functors and the
connection to adjoint functors. We consider the following situation: we start with a functor
U : D → C. Here the category D is often the “better” or “more interesting” category, e.g. when
U is a forgetful functor. An example would be to take for D the category of vector spaces and
for C the category of sets. We would now like to “improve” an object X ∈ C by creating an
object AX ∈ D, e.g. to linearize a set X by creating the vector space AX freely spanned by X.
Note that the vector space AX comes with a distinguished morphism ϕ : X → U(AX) of sets.
The universal property says that for every vector space B, every morphism f : X → U(B) of
sets can be extended uniquely to an “improved” morphism f̃ : AX → B of vector spaces.

Definition 2.3.9 Let C,D be categories and U : D → C a functor. Let X0 be an object in C.

1. An initial universal morphism from X0 to U is a pair (AX0 , ϕ0), consisting of an (“im-
proved”) object AX0 in D and a morphism ϕ0 : X0 → U(AX0) in C (in the original
category), such that the following universal property holds:

For every object B of D and every morphism f : X0 → U(B) in C there exists a unique
(“improved”) morphism f̃ : AX0 → B in D, such that the following diagram in C com-
mutes:

X0
ϕ0 //

f $$

U(AX0)

U(f̃)
��

AX0

∃! f̃
��

U(B) B

in C in D

2. A terminal universal morphism from U to an object X in C is a pair (AX , ϕ), consisting
of an object AX in D and a morphism ϕ : U(AX) → X in C, such that the following
universal property holds:

For every object B of D and every morphism f : U(B) → X in C there exists a unique
morphism f̃ : B → AX in D, such that the following diagram in C commutes:

U(B)
f

##
U(f̃)

��

B

∃! f̃
��

U(AX) ϕ
// X AX

in C in D

To see the connection to adjoint functors, note that e.g. for an initial universal morphism
we have a bijection HomC(X0, U(B)) ∼= HomD(AX0 , B). Conversely, a left adjoint functor for U
yields an initial universal morphism for every X0.

Example 2.3.10
To understand the universal property of the polynomial ring, we consider the forgetful functor

U : K-Alg→ Set

and initial universal morphisms for the one-element set •. This consists of an object in K-Alg,
i.e. a K-algebra R, with a morphism of sets • → U(R), i.e. an element X ∈ R.
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The universal property for an initial universal morphism is the requirement, that for every
K-algebra S and a morphism of sets • → U(S), i.e. for every pair of a K-algebra S and an
element a ∈ S, there exists a unique morphism f : R → S of K-algebras, such that • →
U(R)

U(f)→ U(S) equals • → S is, i.e. that f(X) = a holds.

Remarks 2.3.11

1. As usual, universal properties define objects up to unique isomorphism. If one shows that
two distinct objects satisfy the same universal property, then they have to be isomorphic.

2. Universal constructions are functorial: let (AX1 , ϕ1) be a universal morphism from X1 to
U and (AX2 , ϕ2) a universal morphism from X2 to U . To define a functor X 7→ AX also
on morphisms, consider a morphism h : X1 → X2 in C.
Let h : X1 → X2 be any morphism in C Consider the morphism ϕ2 ◦ h : X1 → X2 →
U(AX2) in C. Applying Definition 2.3.9 to this morphism, we find a uniquely determined

morphism ϕ̃2 ◦ h : AX1 → AX2 , such that the following diagram in C commutes:

X1 ϕ1

//

h

��

U(AX1)

U(ϕ̃2◦h)
��

X2 ϕ2

// U(AX2)

If there exists a universal morphism for every object X of C, then Xi 7→ AXi and

h 7→ ϕ̃2 ◦ h defines a functor V from C to D and the morphisms ϕi yield a natural
transformation from the identity functor to U ◦ V . As a straightforward consequence we
get that the functors are adjoint, namely V a U .

We have already seen that every pair of adjoint functors yields universal morphisms for all
objects. Conversely, universal constructions assemble into adjoint functors if every object
in C admits a universal morphism.

3. This implies the following uniqueness statement which is stronger than the statement in
Theorem 2.3.7:

Adjoint functors are not only unique up to isomorphism, they are unique up to unique
isomorphism; that is, if F is left adjoint to G and also to G′, then there is a unique

isomorphism G
∼=→ G′ compatible with the data of the two adjunctions.

2.4 A brief look at quivers

Quivers are a source of examples for algebras whose representation categories can be controlled
to a certain extent.

Definition 2.4.1 1. A (finite) quiver is a (finite) directed graph, i.e. a pair (Q0, Q1) of
(finite) sets, together with a pair of maps t, h : Q1 → Q0, called tail and head, indicating
the vertex that is a source and a target of an arrow.

2. A representation of a quiver over a field K assigns to each vertex v ∈ Q0 a vector space
Vv and to an arrow a ∈ Q1 a linear map Va : Vt(a) → Vh(a).
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3. A morphism φ : V → W of representations of a quiver is a collection of maps {φx : Vx →
Wx}x∈Q0 such that all diagrams

Vt(a)
Va //

φt(a)
��

Vh(a)

φh(a)
��

Wt(a) Wa

//Wh(a)

commute for all arrows a ∈ Q1.

Remarks 2.4.2 1. Representations of quivers form a category. Finite-dimensional repre-
sentations of quivers form a subcategory; to each object in this subcategory, one can
associate a dimension vector (dimK Vv)v∈Q0 .

2. Consider the category F(Q0, Q1) that is freely generated by the quiver, cf. Exam-
ples 2.3.2.6. The category of representations of the quiver is then just the functor category
[F(Q0, Q1), vect].

3. To a quiver, one associates its path algebra K[Q]: it is defined on the vector space freely
generated by the set of morphisms of F(Q0, Q1), which is the set of paths on the quiver.
Multiplication is induced from concatenation of paths, if this is possible, and defined to
be zero otherwise. The K-linear representations of the quiver are K[Q] modules.

Quivers unify problems from linear algebra.

Examples 2.4.3 1. Let Γ1 be the quiver with one vertex and no edge. A representation of
this quiver is just a K-vector space. The only indecomposable module up to isomorphism
is the one-dimensional vector space which is also simple. The quiver algebra is just the
ground field.

2. Let Γ2 be the quiver with one vertex and one edge from the vertex to itself. A repre-
sentation is a pair (V, f), consisting of a vector space V and an endomorphism of V .
This problem was treated in linear algebra. If K is algebraically closed, indecomposable
modules are described by a Jordan block, simple modules by an eigenvalue. There are in-
finitely many isomorphism classes of simple module. The quiver algebra is the polynomial
ring K[X].

3. Let Γ3 be the quiver with two vertices 1, 2 and a single edge from 1 to 2. A representation

is a triple V1
f→ V2. We can find complements such that

V1 = U ⊕ ker f and V2 = W ⊕ Im f

and f |U : U → Im f is bijective. We can thus decompose as a direct sum

(V1
f→ V2) ∼= (ker f

0→ 0)⊕ (U
f |U→ Im f)⊕ (0

0→ W )

Writing each direct summand as a direct sum involving vector spaces of dimension at
most 1, we find three indecomposable modules up to isomorphism:

(K
0→ 0) , (K

id→ K) and (0
0→ K) .
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Any finite-dimensional representation is a direct sum of these indecomposable represen-

tations. Only the indecomposables (K
0→ 0) and (0

0→ K) are simple. The representation

(0→ K) is a subrepresentation of (K
id→ K) and (K → 0) is a quotient:

0→ (0→ K)→ (K → K)→ (K → 0)→ 0

so that (K → K) is not simple.

The quiver algebra consists of upper triangular matrices of the form(
a b
0 d

)
with a, b, d ∈ K.

4. Let Γ4 be the quiver with one vertex and two edges joining it. To classify all finite-
dimensional representations, one has to classify all pairs of matrices up to simulteneous
conjugation. This is a very hard problem.

Remarks 2.4.4 1. The examples shows that the representation categories of quivers can
be rather different.

2. The finite quiver Γ2 contains oriented cycles. In fact, the quiver algebra K[Q] of a finite
quiver is infinite-dimensional, if and only if Q contains oriented cycles.

3. For each vertex v ∈ Q0, we obtain a representation of Q by assigning K to this vertex and
the zero vector space to all other vertices. These representations are simple. If Q does not
contain oriented cycles, these are, up to isomorphism, all simple representations. For the
(simple) proof, we refer to [JS06, Satz J.6]. In the example of Γ3, we obtain the 2 simples
(K → 0) and (0→ K). The example of the quiver Γ2 shows that the statement does not
have to hold for quivers with oriented cycles.

4. For each vertex v, the identity idv in the category F(Q0, Q1) is an idempotent εi in the
quiver algebra. Suppose that the quiver is finite and does not have oriented cycles. Then
1 =

∑
v∈Q0

εv and we have a direct sum decomposition

K[Q] ∼= ⊕v∈Q0K[Q]εv

of the regular module as the direct sum of indecomposable projective modules. We obtain
in the example Γ1 that the one-dimensional vector space K is projective. In the example
of Γ3, we obtain the indecomposable projectives

(K → K) and (0→ K) .

5. Quivers come in three different types:

• A quiver is said to be of finite type, if it has only finitely many indecomposable
representations, up to isomorphism. The equivers Γ1 and Γ3 are of finite type. A
famous theorem of Gabriel states that a quiver is of finite type, if and only if its
underlying undirected graph is the finite union of Dynkin graphs of type A,D and E.
This is a surprising link to Lie theory which goes even further: the indecomposable
representations are in bijection to the positive roots of the corresponding root system.

• If it has infinitely many indecomposable representations, but they appear in families
of dimension at most 1, the quiver is said to be of tame type. The quiver Γ2 is of
tame type.

• Otherwise, it is called wild. The quiver Γ4 is wild.
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3 Additive, abelian and linear categories

3.1 Abelian categories

We start by requiring additional algebraic structure on the morphisms sets of categories. For
example, in the category R−Mod the morphisms sets were abelian groups. It is then natural
to study the class of functors that respect these structures.

Definition 3.1.1

1. A category C is called additive, if

(a) All Hom-sets are abelian groups and the composition ◦ is bilinear.

(b) All finite products and coproducts exist in C.

2. Let C and D be additive categories. A functor F : C → D is called additive, if for every
pair X, Y of objects of C the map F : HomC(X, Y ) → HomD(F (X), F (Y )) is a group
homomorphism.

We know that 1.(b) means that the diagonal functor ∆: C →
∏

i∈I C for a finite indexing set
I has the coproduct functor

∐
i∈I as left adjoint and the product functor

∏
i∈I as right adjoint.

The category R−Mod of modules over a ring is additive. Its full subcategory of projective
objects is additive as well.

Remark 3.1.2 Note that for an additive category we also require the existence of the empty
product and coproduct.

• We already know from Examples 2.2.5 that the empty coproduct
∐
∅ is an initial object

in C. Dually, the empty product
∏
∅ is a terminal object ? ∈ C.

• The initial object 0 ∈ C has a unique endomorphism, namely the identity id0. On the
other hand, id0 is the neutral element 00 for the abelian group structure on HomC(0, 0).
Thus we have id0 = 00.

For an arbitrary morphism c
f→ 0 the bilinearity of the composition implies f = id0 ◦ f =

00 ◦f = 0 ∈ HomC(c, 0) for all objects c ∈ C. Thus there exists only a single morphisms to
0, i.e. HomC(c, 0) = {0}. The initial object 0 in an additive category is thus also terminal,
0 ∼= ?. Categories with isomorphic terminal and initial object are called pointed categories.
Additive categories are thus pointed.

• In every pointed category we find for every pair of objects X, Y a morphism X
0→ 0

0→
Y ∈ Hom(X, Y ). We leave it as an exercise to check that such a morphism in an additive
category gives the neutral element of the abelian group Hom(X, Y ).

Remark 3.1.3 We now consider whether being additive is a property of a category or an
additional structure on a category.

• Being pointed is a property of a category.

• In every pointed category there exists a canonical morphism∐
i∈I

Xi →
∏
i∈I

Xi
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from the coproduct to the product. For this we provide a family of morphisms:

fij : Xi → Xj

this is 0 : Xi → Xj for i 6= j and idXi for i = j.

If this morphism has the property of being an isomorphism for every finite family I, then
for two morphisms f, g : A→ B

A
(idA,idA)−→ A

∏
A ∼= A

∐
A

(f,g)−→ B

defines a structure of an abelian monoid on Hom(A,B), such that the composition is
bilinear. Now it is again a property of an abelian monoid to be a group. The additive
structure thus exhibited is actually the only possible one, see e.g. [B94, Proposition 1.2.7].

For a given category it is thus a property to be an additive category, and this does not
require choosing any additional structure.

• Conversely, if the Hom-sets of a category carry the structure of abelian monoids and all
finite coproducts (resp. products) exist, then the category is pointed and the coproducts
are also products (resp. the products are coproducts).

We next adapt the notions of an equalizer and coequalizer from Definition 2.2.6 to the
setting of abelian categories:

Definition 3.1.4
1. Let f : a→ b be a morphism in an additive category C. The kernel of f consists of a pair

(k, ι), consisting of and object k and a morphism ι : k → a such that f ◦ ι = 0 and such

that for every morphism d
g→ a with f ◦ g = 0 there exists a unique morphism d → k,

such that the diagram

k
ι // a

f // b

d
∃!

^^

g

OO

0

@@

commutes. Equivalently, one requires that for all objects d the following sequence of
abelian groups is exact:

0→ HomC(d, k)
ι∗→ HomC(d, a)

f∗→ HomC(d, b)

2. Analogously, the cokernel of f is a pair (c, p) consisting of an object c and a morphism
p : b→ c such that for all objects d the following sequence of abelian groups is exact:

0→ HomC(c, d)
p∗→ HomC(b, d)

f∗→ HomC(a, d) .

As diagram:

a
f //

0 ��

b

��

p // c

∃!��
d

In a general category, not every morphism has to have a kernel resp. cokernel.

Definition 3.1.5 Let C be a category.
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1. A morphism ι : a → b is called a monomorphism, if ι ◦ f = ι ◦ f ′ implies f = f ′ for all
morphism f and f ′ with target a and equal source. (In an additive category it is sufficient
to require this for f ′ = 0.)

2. A morphism p : a → b is called an epimorphism, if f ◦ p = f ′ ◦ p implies f = f ′ for all
morphisms f, f ′ with source b and equal target.

Lemma 3.1.6 Let C be an additive category. Let f ∈ HomC(A,B) be a morphism that has
a kernel K

ι→ A. Then the kernel ι is a monomorphism. Dually, if f has a cokernel, then the
cokernel is an epimorphism.

Proof. For an arbitrary object X we consider the zero morphism X
0→ A. By the universal

property of the kernel there exists a unique morphism φ, such that the diagram

ker f // A
f // B

X

0

OO

∃φ

bb

0

??

commutes. The choice 0 for φ also makes the diagram commutes, so we must have φ = 0. Given
X

g→ ker f with ker f ◦ g = 0, then we must have g = 0, so ker f is a monomorphism. The
argument for the cokernel is dual.

Definition 3.1.7 Let C be a category. An additive category is called an abelian category, if
every morphism has a kernel and a cokernel, and the following compatibility condition holds:

– For every monomorphism ι : a → b one has ι = ker(coker(ι)). Explicitly, in the diagram
for the monomorphism

a ι // b
ρ // cokerι

ker cokerι

ker

OO

the left horizontal arrow and the vertical arrow have the same universal property.

– For every epimorphism p : a→ b one has p = coker(ker(p)).

For a given category it is again a property to be an abelian category, without choice of an
additional structure. Before we continue the study of abelian categories, we define

Definition 3.1.8 Let R be a commutative ring (possibly even a field).

1. A R-linear category is a category for which all Hom-sets have been endowed with the
structure of an R-module and for which the composition is R-bilinear.

2. A linear functor is an additive functor that consists of R-linear maps on the Hom-spaces.

Examples 3.1.9 The category R−Mod of modules over a ring is Z-linear. The category
R−Mod is also abelian. The full subcategory Proj(R) of projective R-modules is Z-linear, but

not abelian. For example, the morphism Z 2→ Z is a monomorphism. It is, however, not the
kernel of its cokernel which is zero.
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Definition 3.1.10 Suppose, a morphism f : a→ b in an arbitrary category f : a→ b can be
decomposed as f = ι ◦ p, where p : a → x is an epimorphism and ι : x → b a monomorphism.
Consider an initial such decomposition f = ι0◦p0. This means that for any such decompsosition
f = ι ◦ p, there exists a unique morphism

a

p0
��

p

**

f // b

x0

��

ι0

??

x

ι

TT

Then x0 = Im (f) is called an image of f . Since it is defined by a universal property, it is unique
up to unique isomorphism.

Remarks 3.1.11

1. As usual for object defined via universal properties, one can show that kernels, cokernels
and images are unique up to unique isomorphism, if they exist.

2. In abelian categories every morphism f can be written as f = ι◦p with ι a monomorphism
and p an epimorphism, and so all images exist.

To see this, we consider the kernel of the cokernel ρ : b→ cokerf of a
f→ b:

ker ρ // b
ρ // cokerf

a

f

OO

0

;;

e

bb

As ρ ◦ f = 0, there exists a unique morphism e by the universal property of the kernel.

One still has to show that e is an epimorphism. This technical proof can be found in [K07,
pp. 239] or [McL71, Chapter VIII.3]. There it is also shown that e = coker(ker f) and
that the factorization (and thus the image) is functorial.

Examples 3.1.12

1. We consider the category Abfr of finitely generated free abelian groups with group ho-
momorphisms as morphisms.

• Subgroups of finitely generated free abelian groups are, as we will see, again finitely
generated and free. Thus the kernels in Abfr are the kernels in the category Ab of
abelian groups.

• The image of the torsion elements into a free abelian group is always zero. Consider
the diagram in the category Ab of abelian groups:

a
f // b

��

cokerf// coker(f)

zz
x

In our case x is always a free abelian group. Thus the dashed morphism factors
through the torsion-free group coker(f)/Tor. The cokernel of a map f : M ′ →M in
Abfr is thus given by the free group coker(f)/Tor, i.e. by the quotient group by the
subgroup of all torsion elements.
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• The category Abfr thus has all kernels and cokernels, but the cokernels may be
different from the cokernels in Ab. We have to be careful: consider for 0 6= n ∈ Z the
multiplication map ιn : Z → Z; it has trivial kernel and cokernel in Abfr. Thus the
image of this map in Abfr is the identity map Z → Z. As ιn is an injective map of
the underlying sets, it is also a monomorphism, but ker(coker(ιn)) = idZ 6= ιn. Thus
Abfr is not an abelian category.

2. For every ring R the category of R-modules is abelian, because kernels and cokernels are
defined on the level of the underlying abelian groups.

The converse also holds and is known as the full embedding theorem: every small abelian
category can be fully faithfully embedded by an exact funcgtor in the category of modules
over a suitable ring, such that exactness properties are preserved, See e.g. [Mi65, p. 151].

3. If C is an abelian category, then so is the opposite category Copp. The kernels in Copp are
the cokernels in C and vice versa.

We now have all required notions to make sense of exact sequences in abelian categories,
which are defined in complete analogy to Definition 1.4.1. Abelian categories are thus a natural
framework for homological algebra.

Definition 3.1.13 Let F : C → D be an additive functor between abelian categories. We
consider all short exact sequences 0→ a′ → a→ a′′ → 0 in C. Now F is called

half exact, if F (a′)→ F (a)→ F (a′′) is exact for all short exact sequences in C;
left exact, if 0 = F (0)→ F (a′)→ F (a)→ F (a′′) is exact for all short exact sequences in C;
right exact, if F (a′)→ F (a)→ F (a′′)→ 0 is exact for all short exact sequences in C;
exact, if 0→ F (a′)→ F (a)→ F (a′′)→ 0 is exact for all short exact sequences in C.

Examples 3.1.14

1. The functors
∐

and
∏

: C × C → C are exact whenever they exist, cf. the proof of 1.4.7,
step (2)⇒(4). By Remark 3.1.2 product and coproduct then coincide.

2. Let M be an R-right module. The functor M ⊗R − : R−Mod → Ab is right exact by
Theorem 1.4.10. It is exact if and only if the module M is flat, cf. Definition 1.4.11.

3. Let M be an R-module. The functor HomR(M,−) : R−Mod → Ab is left exact. It is
exact if and only if the module M is projective, cf. Theorem 1.4.7.

4. Let M be an R-module. The functor HomR(−,M) : (R−Mod)opp → Ab is left exact. It is
exact if and only if the module M is injective, cf. Theorem 1.4.13.

Let R,S be rings. We have seen in Theorem 1.4.10 that for any S-R-bimodule B the functor

R-mod → S-mod
M 7→ B ⊗A′ M

is right exact. We next show that any right exact functor that commutes with direct sums is
of this form:

Theorem 3.1.15 [Eilenberg-Watts] Let F : R−Mod→ S−Mod be a right exact functor that
commutes with direct sums. Then there exists an S-R-bimodule B and a natural isomorphism
F ∼= B⊗R of functors.
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Proof. For any r ∈ R, the map
ρr : R → R

r′ 7→ r′ · r
is an R-module endomorphism of the left regular R-module. Therefore F (ρr) : F (RR)→ F (RR)
gives for each r ∈ R a module endomorphisms of F (R) which is by definition a left S-module.
We indeed obtain an S-R-bimodule B := F (R) in this way.

Given an R-module M , for each m ∈M , the R-module morphism

φm : R → M
r 7→ r.m

gives a morphism
Fφm : B = F (R)→ F (M)

of S-modules. The map
ψ̂M : F (R)×M → F (M)

(b,m) 7→ F (φm)(b)

is R-balanced. To see this, note that φm ◦ ρr is the R-module morphism RR→M mapping

r′ 7→ r′r 7→ r′rm

so that we get φm ◦ ρr = φrm. Therefore, we have

ψ̃M(br,m) = F (φm)(br) = F (φm)F (ρr)(b)

= F (φm ◦ ρr)(b) = F (φrm)(b) = ψ̃M(b, rm)

The map ψ̃M thus gives rise to a map

ψM : B ⊗RM → F (M)

for each M ∈ R−Mod. These maps are natural and for the regular module RR

ψR : B ⊗R R→ B

is the canonical isomorphism. Since the two functors F and B⊗R− both commute with direct
sums, ψF is an isomorphism, if F is a free module.

For an arbitrary R-module M , find an exact sequence

0→ K → L→M → 0

where L is a free R-module. We get a diagram with exact rows

B ⊗R K //

ψK
��

B ⊗R L //

ψL
��

B ⊗RM //

ψM
��

0

F (K) // F (L) //// F (M) // 0

where ψL is an isomorphism. This implies at once that ψM is surjective. This applies to any
module, hence also to the module K and we learn that ψK is surjetive as well. An easy diagram
chase in the spirit of the proof of the nine Lemma 1.5.8 now implies that ψM is also injective.

Remark 3.1.16 • There is a corresponding statement for a left exact functor F :
R−Mod → S−Mod. Then there exists a R-S-bimodule C and a natural equivalence
of functors HomR(C,−) ∼= F . For details, see [W60].
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• Consider the pullback functor φ∗ : S−Mod → R−Mod for a ring homomorphism φ :
R → S that was studied in Example 2.3.3. It is exact, which can be shown to imply
the existence of adjoints. The Eilenberg-Watts theorem then implies immediately that
the induction functor can be expressed as a tensor product with a bimodule and the
coinduction functor in terms of a Hom functor.

We now come to the more general definitions for abelian categories:

Definition 3.1.17

1. An object U of an abelian category is called projective, if the functor Hom(U,−) : C → Ab
is exact.

2. An abelian category C is called semisimple , if every object U of C is projective, i.e. if all
functors Hom(U,−) are exact.

3. An object U of an abelian category is called injective, if the functor Hom(−, U) : Copp →
Ab is exact.

4. If an abelian category C has a tensor product ⊗ : C × C → C with similar properties as
tensor product of A-bimodules over rings, 1 then an object U is called flat, if the functor
U ⊗− : C → C is exact.

In this abstract language we will later access the area of homological algebra, which concerns
the study of half exact functors. The focus will be on the functors ⊗ and Hom. Using the
full embedding theorem from Examples 3.1.12.2 it is clear, that statements such as the Nine
Lemma 1.5.8 hold in arbitrary abelian categories.

Remark 3.1.18

1. One can define projective and injective objects in arbitrary categories, not just abelian
categories. Let C be an arbitrary category. An object P ∈ C is called projective, if for every
epimorphism e : M → N and every morphism f : P → N there exists a lift f̃ : P → M
with e ◦ f̃ = f . Injective objects are defined dually.

2. In the category of sets every object M is injective: consider for a subset N1 ⊂ N2 and a
morphism f : N1 →M the diagram

N1
//

f
��

N2

}}
M

Then the map f can indeed be extended to the superset. In other mathematical contexts
the existence of extensions can be a nontrivial problem or just fail!

3. The statement, that every object in the category of sets is projective, is equivalent to the
axiom of choice.

Assuming the axiom of choice, we may choose for a given epimorphism e : M → N a
section s : N → M , i.e. e ◦ s = idN . For an arbitrary morphism f : P → N we then set
f̃ := s ◦ f . Then we have e ◦ f̃ = e ◦ s ◦ f = f , which shows that every object P is
projective.

1More precisely, it is a monoidal category as defined e.g. in the lecture Hopf algebras, quantum groups and
topological field theory.
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Conversely, if every set is projective, we consider for a given epimorphism e : M → N
the morphism f = idN and find by the lifting property for the identity a section of e, as
diagram:

N

id
��

M
e // N // 0

3.2 Finite linear categories and categories of finite-dimensional
modules

We fix a field K. In this section, we follow [DSPS19]:

Definition 3.2.1 A K-linear abelian category C is finite if

1. C has finite-dimensional spaces of morphisms;

2. The composition series of every object of C has finite length;

3. C has enough projectives, i.e. for every object X, there is a projective object P with an
epimorphism P � X.

4. There are finitely many isomorphism classes of simple objects.

Example 3.2.2 The category of finite dimensional vector spaces is a finite linear category.

The following proposition justifies the name finite category:

Proposition 3.2.3 A K-linear abelian category is finite, if and only if it is equivalent to the
category A−Mod of finite-dimensional modules over a finite-dimensional K-algebra A.

We will first prove two lemmas.

Lemma 3.2.4 Let F : C � D : U be an adjunction between abelian categories.

1. The right adjoint U is faithful, if and only if the counit FU(X)→ X is an epimorphism
for every object X ∈ D.

2. If U is faithful, then U reflects isomorphisms, i.e. if U(f) is an isomorphism in C, then f
is already an isomorphism in D.

Proof. • The functor U is faithful precisely when U(f) = 0 implies f = 0 for all morphisms
f : X → Y in D. Suppose that the counit εX : FU(X) → X is a surjection for every
object X ∈ D and let f : X → Y be a morphism such that U(f) : U(X) → U(Y ) is
the zero morphism. Then the composite FU(X)→ FU(Y )→ Y is the zero morphism as
well. Since the counit is natural, this composite is the same as the composite FU(X)→
X → Y ,

FU(X)
F (f) //

εX
��

FU(Y )

εY
��

X
f // Y

hence this composite is also the zero morphism. Now since the counit εX : FU(X)→ X
is surjective, the original map f : X → Y must be the zero morphism. Hence the functor
U is faithful.
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• In the other direction, suppose that U is faithful, and fix an object X ∈ D. Let f : X → C
be the cokernel of the counit map εX : FU(X)→ X. We wish to show that the cokernel is
zero. Since the composite f ◦εX = 0 by definition of the cokernel, we have U(f)◦U(εX) =
0. However U(εX) : UFU(X) → U(X) is split (by the unit ηUX : UX → UFUX of the
adjunction) and hence is surjective, which implies that U(f) = 0. Since U is by assumption
faithful, we have that f = 0 and so the cokernel has to be, in fact, zero as desired.

• For the last statement, notice that a faithful functor U : D → C reflects monomorphisms:
let g : z → x and h : z → x be morphisms in D such that f ◦ g = f ◦ h. Since U is a
functor, we have

U(f) ◦ U(g) = U(f ◦ g) = U(f ◦ h) = U(f) ◦ U(h) .

Since U(f) is by assumption a monomorphism, we have U(g) = U(h). Since U is faithful,
it follows that g = h. Hence f is a monomorphism in D. A similar argument shows that
U reflects epimorphisms. In an abelian category, a morphism is an isomorphism if and
only if it is a monomorphism and an epimorphism.

Lemma 3.2.5 Let F : C � D : U be an adjunction between linear categories in which U and
F are linear functors, and where U is exact and faithful. Suppose that C is finite, then D is also
finite.

Proof. • Since U is faithful, the morphism spaces in D are subspaces of the morphism spaces
of C, hence finite dimensional.

• Since U is a right adjoint, it preserves subobjects. Thus U sends a decreasing chain of sub-
objects to a decreasing chain of subobjects. Since U is exact and faithful, by Lemma 3.2.4
it reflects isomorphisms, and hence U also preserves strictly decreasing chains of subob-
jects. Since every such chain in C has finite length, the same is true in D.

• Let X ∈ D be an object, and let P � U(X) be a surjection in C from a projective object
P . Since F is a left adjoint, it preserves surjections. Since U is faithful, by Lemma 3.2.4,
FU(X)→ X is a surjection. Thus the composite

F (P )→ FU(X)→ X

is surjective. Moreover, the functor HomD(F (P ),−) ∼= HomC(P,U(−)) = HomC(P,−)◦U
is exact, and hence F (P ) is projective. Thus D also has enough projectives.

• Now suppose that X ∈ D is a non-zero object. We claim that then the object U(X) ∈ C is
also non-zero. Note that U as a right adjoint preserves the zero object. Hence the unique
morphism f : 0→ X is mapped to the unique morphism 0→ U(X). If U(X) were a zero
object, then this morphism and thus U(f) would be an isomorphism. Since U reflects
isomorphisms by Lemma 3.2.4.2, the isomorphism 0 ∼= U(X) in D would come from an
isomorphism 0 ∼= X in C and X would be also a zero object.

Moreover, U(X) has finite length, hence there exists a non-zero morphism f : S → U(X)
where S is some simple object of C. The adjoint of this morphism is the unique morphism
f : F (S)→ X such that f factors as

S
ηS→ UF (S)

U(f)→ U(X) .
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Hence, since f is non-zero, f must also be non-zero.

Now let W = ⊕Si be the direct sum of representatives from each of the finitely many
isomorphism classes of simple objects of C. We have shown that for every object X ∈ D,
there exists a non-zero morphism F (W )→ X. If X is simple, then a non-zero morphism
is necessarily a surjection. In particular, it follows that every simple object of D occurs
as a simple factor in some composition series for the object F (W ) ∈ D. Since F (W )
is finite length and by the Jordan-Hölder theorem, any two composition series have the
same simple factors up to permutation and isomorphism, and hence there are finitely
many isomorphism classes of simple objects in D.

Proof of Prop. 3.2.3. • Let A be a finite-dimensional K-algebra and consider the linear
category A−Mod of finite-dimensional left A-modules. The linear category vectk is finite
and the free-forgetful adjunction A⊗ (−) : vectK � A−Mod : U satisfies the conditions
of Lemma 3.2.5. Hence the linear category A−Mod is finite.

• Now assume that C is a finite linear abelian category. Let {Xi} be a set of representatives
for the (finitely many) isomorphism classes of simples. Let Pi → Xi be a surjection, with Pi
projective, let P = ⊕Pi. This is a finite direct sum, hence P ∈ C. Let A = HomC(P, P ).
As the morphism spaces of C are finite-dimensional, A is a finite-dimensional algebra,
where the algebra structure on A is defined by composition, a · b := b ◦ a. We will see in
an exercise that P is a generator, so that by Examples 2.1.14.2 HomC(P,−) is faithful.

• Given a finite-dimensional vector space W and an object c ∈ C, the functor

C → vectK
c′ 7→ HomC(c, c

′)⊗W ∗

is left exact. By Remark 3.1.16, this functor is representable. Thus there exists an object
in C that we denote by c⊗W such that

HomC(c⊗W, c′) ∼= HomC(c, c
′)⊗W ∗ (∗) .

For morphisms V
f→ W in vectK , this implies

HomC(c⊗W, c′) ∼ //

(idc⊗f)∗

��

HomC(c, c
′)⊗W ∗

id⊗f∗
��

HomC(c⊗ V, c′) // HomC(c, c
′)⊗ V ∗

One checks that since we have finite direct sums c⊗W ∼= c⊕ dimW , we also have

HomC(c
′, c⊗W ) ∼= HomC(c

′, c)⊗W (∗∗) .

• Applying (∗) to c = P and W = HomC(P, P ) = A, we find

HomC(P ⊗ A,P ) ∼= HomC(P, P )⊗ HomC(P, P )∗ .

The right hand side contains a canonical element corresponding to the identity linear
endomorphism of the vector space HomC(P, P ). We thus get a canonical morphism in C

λ : P ⊗ A→ P .
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We define a functor P ⊗A (−) : A−Mod→ C by

P ⊗AM := coeq{P ⊗ A⊗M ⇒ P ⊗M} .

Here, the arrows are λ⊗ idM and idP ⊗ ρM .

We claim that we have an adjunction, which we will show is an equivalence:

P ⊗A (−) : A−Mod � C : HomC(P,−).

We have to find isomorphisms

HomC(P ⊗AM, c) ∼= HomA(M,HomC(P, c))

for any M ∈ A−Mod and c ∈ C. Indeed, a morphism ϕ ∈ HomC(P ⊗AM, c) is described
by a morphism in ϕ ∈ HomC(P ⊗M, c) such that

ϕ ◦ (λ⊗ idM) = ϕ ◦ (idP ⊗ ρM) .

We translate this to ϕ̂ ∈ HomC(P, c) ⊗M∗ ∼= HomK(M,HomC(P, c)). Consider the dia-
gram:

HomC(P ⊗M, c) ∼ //

��

HomC(P, c)⊗M∗ ∼ //

id⊗ρ∗
��

HomK(M,HomC(P, c))

��
HomC(P ⊗ A⊗M, c) ∼ // HomC(P, c)⊗ (A⊗M)∗ ∼ // HomK(M ⊗ A,HomC(P, c))

ϕ in the top left corner is mapped under the left vertical arrow to ϕ ◦ (idP ⊗ ρM). On
the right vertical arrow, ϕ̂ is mapped to ϕ̂ ◦ ρM . Noticing that A = HomC(P, P ) we
now consider λ∗ at the left vertical arrow which gives the same element in the bottom left
corner. The middle vertical arrow is now precomposition by the composition HomC(P, c)⊗
A ∼= HomC(P, c)⊗HomC(P, P )→ HomC(P, c). The identity of the two right vertical arrows
then shows that ϕ̂ is a morphism of A-modulkes.

• In order to show that this adjunction is an equivalence, we need only show that the unit
and counit maps are isomorphisms. Because P projective, the functor HomC(P,−) is exact
and preserves coequalizers. Thus

HomC(P, P ⊗AM) = coeq (HomC(P, P ⊗ A⊗M) ⇒ HomC(P, P ⊗M))
= coeq (HomC(P, P )⊗ A⊗M ⇒ HomC(P, P )⊗M)
= A⊗AM ∼= M

The composition of the unit map M → HomC(P, P ⊗A M) of the adjunction with this
isomorphism is the identity, hence the unit map is an isomorphism.

• It only remains to show that the counit

ev : P ⊗A HomC(P, c)→ c

of the adjunction is an isomorphism for every c ∈ C. The counit becomes an isomorphism
after applying HomC(P,−), and so the desired result follows, if we show that the functor
HomC(P,−) reflects isomorphisms. This would follow immediately from Lemma 3.2.4.2,
if we had already proven that P is a generator, since then HomC(P,−) is faithful.
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As P is projective, the functor HomC(P,−) is exact. Hence, the fact that it reflects
isomorphisms is equivalent to that statement that for all c ∈ C,

HomC(P, c) ∼= 0 if and only if c ∼= 0 .

By construction this holds for all objects c of length at most 1, i.e. for all simple objects.
We prove that it holds for all objects by induction on the length. Suppose that c is an
object of C and, by induction, that for all objects c′ with length strictly less than the
length of c, we know HomC(P, c

′) ∼= 0 if and only if c′ ∼= 0. By assumption there exists an
exact sequence in C

0→ c′ → c→ c′′ → 0

with c′′ simple, and with the length of c′ strictly less than the length of c. We obtain an
exact sequence:

0→ HomC(P, c
′)→ HomC(P, c)→ HomC(P, c

′′)→ 0.

If the middle term is zero, then all terms vanish. By the induction hypothesis, we conclude
that c′′ ∼= c′ ∼= 0, and hence c itself was zero. Thus HomC(P,−) reflects isomorphisms, as
required.

3.3 Free and cofree modules

We now have the tools available that will allow to give a characterization of injective modules
that is dual to the characterization of projective modules as direct summands of free modules.

For this we need the following lemma:

Lemma 3.3.1 Let (Mi)i∈I be a family of objects of an abelian category C.

1. The coproduct
∐

i∈IMi of the family is projective if and only if every summand Mi is
projective.

2. The product
∏

i∈IMi of the family is injective if and only if every factor Mi is injective.

Proof. We only show the second statement about injective objects. The first statement uses
the universal property of the direct sum instead.

We show that the functor Hom(−,
∏

i∈IMi) is exact, if and only if all Mi are injective. For
this we apply the functor to an arbitrary short exact sequence

0→ A→ B → C → 0

and obtain, by the universal property of the product, the sequence of abelian groups:

0→
∏
i∈I

HomR(C,Mi)→
∏
i∈I

HomR(B,Mi)→
∏
i∈I

HomR(A,Mi)→ 0

This apparently is exact if and only if the individual sequences

0→ Hom(C,Mi)→ Hom(B,Mi)→ Hom(A,Mi)→ 0

for all i are exact, i.e. when all objects Mi are injective.

Definition 3.3.2 Let R be a ring.
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1. An R-module R̃ is called regular if it is projective and for every R-module M there exists
an exact sequence

⊕i∈IR̃→M → 0

for a suitable family I. Every module of the form ⊕i∈IR̃ is called a free module relative
to R̃.

2. An R-module R∗ is called coregular, if it is injective and for every R-module M there
exists an exact sequence

0→M →
∏
i∈I

R∗

for a suitable family I. Every module of the form
∏

i∈I R
∗ is called a cofree module relative

to R∗.

By Lemma 3.3.1.2 free modules are projective and cofree modules are injective.

Examples 3.3.3

1. R itself is regular, and so are direct sums of copies of R.

2. The abelian group R∗ := HomZ(R,Q/Z) is an R-module via the right action of R on
itself, cf. Theorem 1.2.9.2.

• Consider a divisible abelian group D and the coinduced R-module HomZ(R,D)
(coinduced with respect to the unique morphism Z→ R). We claim that HomZ(R,D)
is injective. Theorem 1.2.9.3 implies the isomorphism of functors: R−Mod→ Ab

HomR(−,HomZ(R,D)) ∼= HomZ(R⊗R −, D) ∼= HomZ(−, D) .

Note that in the last functor one has to apply the forgetful functor from R-modules
to abelian groups in the first argument which is exact. We can summarize our finding
in the statement that the coinduction functor is right adjoint to the forgetful functor
R−Mod→ Ab.

As D is divisible, it is injective in the category of Z-modules by Corollary 1.4.16.
Thus the functor on the right-hand side is exact, and so is the functor on the left,
but this implies that the R-module HomZ(R,D) is injective.

• Second, we argue that every R-module M can be mapped injectively into a product
of copies of the module R∗. To this end we use again that coinduction is right adjoint
to the forgetful functor, so we have an isomorphism of abelian groups:

(∗) HomR(M,HomZ(R,Q/Z)) ∼= HomZ(M,Q/Z)

The abelian group Q/Z has torsion elements of arbitrary order, and so every every
(non-trivial) abelian group M admits a nonzero group homomorphism to Q/Z.

The adjunctions isomorphism (∗) implies that every nonzero R-module M admits a
nonzero morphism of R-modules M → HomZ(R,Q/Z) ≡ R∗.

• Next we construct a morphism of R-modules M → R∗ that takes a nonzero value
on a given element 0 6= m ∈M . Let 〈m〉 denote the submodule generated by m. By
the previous argument, there exists a nonzero morphism αm : 〈m〉 → R∗. Since the
module R∗ is injective, there exists an extension βm to M , such that the diagram

0 // 〈m〉 //

αm
��

M

βm||
R∗
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commutes. Then we have βm(m) = αm(m) 6= 0.

• In the final step we use the universal property of the product to collect all homo-
morphisms βm into a single one:

β : M →
∏

m∈M\{0}

R∗ .

For every m 6= 0 we have β(m) 6= 0 because the morphism βm in the m-th component
takes a nonzero value on m. Thus β is injective and hence a monomorphism.

Theorem 3.3.4

1. Let R̃ be regular. Then an R-module M is projective if and only if it is a direct summand
in a direct sum ⊕i∈IR̃.

2. Let R∗ be coregular. Then M is injective if and only if it is a direct factor in a product∏
i∈I R

∗.

Proof. We only prove the second statement, the first statement is dual (and known in the
special case R̃ = R as one of the characterizations of a projective object in Theorem 1.4.7). If
M is injective, then the exact sequence 0 → M →

∏
i∈I R

∗ splits, and so M is a direct factor
of the product. Conversely,

∏
i∈I R

∗ is a product of injective modules and thus injective by
Lemma 3.3.1. If M ×M ′ ∼=

∏
i∈I R

∗, then by the same lemma the injectivity of the right-hand
side implies the injectivity of M .

We now invite the reader to complete Theorem 1.4.13 by adding the characterizations of
injective modules that we have just obtained.
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4 Representation theory

In this section, we invstige the representation categories of concrete algebraic structures: prin-
cipal ideal domains and group algebras.

Our goal in the first two subsections is to give a complete description of finitely generated
modules over principal ideal domains (PIDs). PIDs are arguably the next simple class of rings
beyond fields. (Recall that PIDs are always commutative and have no zero divisors. Moreover,
any element in a PID can be decomposed uniquely into prime elements.) Examples are the ring
Z of integers and the polynomial ring K[X] over a field.

4.1 Submodules and morphisms of modules over principal ideal do-
mains

Theorem 4.1.1 Let M be a free module over a PID R. Then also every submodule U of M
is free. If M has finite rank, then rank(U) ≤ rank(M).

The example nZ ( Z of Z-modules shows that also proper submodules may have equal rank.

Proof. We give the proof only in the case when M has finite rank, namely by induction in
rankM =: n. In the general case one uses Zorn’s lemma.

• For n = 0 we have M = 0 and there is nothing to show.

• For n = 1 we consider a (nonzero) submodule I ⊂R R, i.e, an ideal of R. This is a principal
ideal, I = (a), and thus is generated by a single element. Since R has no zero divisors,
the family (a) is free and thus a basis of I when a 6= 0. So, every nonzero submodule of
R is free of rank 1.

• Let {x1, . . . , xn} be a basis of M . Then the family (x1, . . . , xn−1) is free and the submodule
M ′ = 〈x1, . . . , xn−1〉 of M generated by it is free of rank n− 1. The linear form

f : M → R∑n
i=1 λixi 7→ λn

gives an exact sequence

0→M ′ →M
f→ R→ 0 .

For every submodule U ⊂M we then get a short exact sequence

0→M ′ ∩ U → U → f(U)→ 0 .

The submodule f(U) ⊂ R is free of rank 1 by the induction start, and so Theorem 1.3.6
implies that the sequence splits:

U ∼= (M ′ ∩ U)⊕ f(U) .

The submodule M ′ ∩ U of M ′ is free by induction hypothesis and of rank ≤ n− 1.

Corollary 4.1.2 Every projective module over a PID is free.

Proof. Every projective module is a direct summand of a free module and thus, in particular,
a submodule of a free module. For PIDs, these are again free by Theorem 4.1.1.

Observation 4.1.3
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• Let M be a finitely generated module over a PID R. As for every finitely generated module
over an arbitrary ring we can find a surjection

p : Rm �M

for a suitable m ∈ N. Since R is a PID, the ideal ker p is finitely generated and free by
Theorem 4.1.1, i.e. ker p ∼= Rn. Consider the map ker p : Rn → Rm of free modules. We
find an isomorphism

M ∼= Rm/ ker p ∼= coker ker p .

Thus we can understand the finitely generated module M via the morphism ker p between
two finitely generated free modules. This will allow us to described morphisms in terms
of matrices.

• Note that it is essential that we can work with free modules rather than projective mod-
ules. There are significantly more rings with the property that every submodule of a
projective module is projective. Such rings are called hereditary. A finitely generated
module over a hereditary ring is always the cokernel of a morphism of finitely generated
projective modules. Such morphisms are typically not as easy to describe as morphisms
between free modules.

Next we study morphisms of free modules, and generalize some well-known results from
linear algebra along the way.

Let R be a unital ring. As for fields we also have for rings bijections between Hom-spaces
of free modules and matrices with entries in R, cf. Remark 1.3.2.6:

M : HomR(Rn, Rm)→M(m× n,R) .

The columns of the matrix M(f) = (aij) are the images under f of the vectors e1, . . . , en of the
standard basis of the module Rn. In formulas:

f(ej) =


a1j

a2j
...
amj

 .

For an arbitrary ring R we consider the matrices with entries in R as an abelian group
with respect to matrix addition. Then M is an isomorphism of abelian groups. Matrix mul-
tiplication corresponds to the composition of maps and is a ring isomorphism. An R-module
homomorphism ϕ is an isomorphism if and only if the matrix M(ϕ) is invertible.

If the ring R is commutative, then we equip the matrices with the structure of an R-module
by multiplying all entries by an element from R. Then M is an isomorphism of (free) R-modules.

Definition 4.1.4 If the ring R is commutative, then for square matrices A = (aij) ∈M(n×
n,R) with n 6= 0 we define the determinant by setting

detA =
∑
σ∈Sn

sign(σ)a1σ(1) . . . anσ(n) .

One can also consider the same formula for matrices with entries in a non-commutative
ring. But then the formula detA · detB = detAB fails to hold and the notion is less useful.

Theorem 4.1.5 Let R be a commutative ring.
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1. For any two square matrices A,B ∈M(n× n,R) we have

detA · detB = detAB

2. A square matrix A is invertible in M(n× n,R) if and only if its determinant is invertible
in R, i.e. detA ∈ R×.

Proof. 1. The proof of the multiplicativity of the determinant for matrices with entries in a
field is familiar from linear algebra. Now we may consider the integral domain

Z[Xij, Yij]1≤i,j≤n

as a subring of its fraction field, and thus the determinant with entries in a domain
is multiplicative. Into this abstract identity we can substitute elements of an arbitrary
commutative ring for Xij and Yij, and the claim follows.

2. If A is invertible, then by multiplicativity detA · detA−1 = 1, so the determinant is
invertible in R. Conversely, consider the adjoint matrix with entries

A#
ij := (−1)i+j detAji

where Aji denotes the (n− 1)× (n− 1)-matrix, obtained from A by deleting the jth row
and the ith column. For matrices with entries in a field on shows in linear algebra that

A#A = (detA)I .

As in the first part of the proof, this argument extends to arbitrary commutative rings
R.

We can now generalize the following theorem from linear algebra to finitely generated free
modules over principal ideal domains:

Theorem 4.1.6 [Smith normal form] Let R be a PID and f : M → N a homomorphism
between two free R-modules of finite rank m resp. n.

1. There exists a diagonal matrix D ∈ M(n × m,R) whose entries satisfy the divisibility
conditions

d11 | d22 | d33 . . . | drr ,
where r = min(n,m), and isomorphisms M ∼= Rm, N ∼= Rn, such that the following
diagram commutes

M
f−→ N

' '

Rm D−→ Rn

2. The diagonal entries dii are unique up to multiplication by invertible elements of R, and
are called elementary divisors.

Proof.

• We may assume M = Rm and N = Rn, such that f is represented by a matrix A ∈
M(n×m,R). We are looking for invertible square matrices

X ∈M(n× n,R) , Y ∈M(m×m,R) ,

such that the product XAY has the desired diagonal form with divisibility properties.
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• For a matrix A we let 〈A〉 ⊂ R denote the ideal generated by the entries of A. For every
matrix X, the equation

(XA)ij =
∑
k

xikakj

implies the inclusion
〈XA〉 ⊆ 〈A〉

of ideals. If X is invertible, then one also gets the reverse inclusion and hence

〈XA〉 = 〈A〉 .

• In the main part of the proof, we will describe a procedure to find invertible matrices X̃
and Ỹ , such that

〈(X̃AỸ )11〉 = 〈A〉 ,
i.e. such that the upper left entry of the modified matrix generates the entire ideal 〈A〉.
This will be done in steps. If 〈a11〉 = 〈A〉 then the invertible matrices can be chosen to
be identity matrices and we are done. On the other hand, if 〈a11〉 $ 〈A〉, then we will
describe a subroutine to find invertible matrices X and Y , such that the smaller ideal
gets enlarged: 〈(XAY )11〉 % 〈a11〉. Using this subroutine, we enlarge the principal ideal
generated by the upper left entry. In every PID there exist only finite many distinct ideals
a between two given ideals, a0 ⊆ a ⊆ a1 (this is a consequence of the uniqueness of the
prime decomposition). Thus our subroutine reaches after finitely many steps the ideal
〈A〉, and thus we get the invertible matrices X̃ and Ỹ as desired.

Now one can perform row and column operations to eliminate all but the first entry in
the first row and the first column, without changing the upper left entry: here we use
that a11 divides all entries, which allows us to subtract suitable multiples of the first row
resp. column from every other row resp. column. This corresponds to finding invertible
matrices X̂ and Ŷ such that X̂ A Ŷ has only zeros in the first column and row, except
the one entry in the upper left, now called d11. Here we also record 〈d11〉 = 〈A〉, i.e. d11

divides all other entries.

By induction one now proceeds on the submatrices obtained by omitting the first row
and column.

• We still have to describe the subroutine to enlarge the principal ideal generated by the
upper left entry. To this end we distinguish three cases:

(a) a11 does not divide all elements in the first row, without loss of generality it does
not divide a12. Then we write the ideal 〈a11, a12〉 in the PID R as principal ideal:

〈a11, a12〉 = 〈d〉 with d 6= 0 .

Thus we can find x, y, λ, µ ∈ R such that:

d = xa11 + ya12

a11 = dλ

a12 = dµ .

As PIDs have, by definition, no zero divisors, this implies 1 = xλ + yµ. We now
consider the product of the following two matrices:

a11 a12

∗
∗ ∗
∗ ∗




x −µ
0

y λ
0 I

 =


d ∗

∗
∗ ∗
∗ ∗


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The second matrix Y on the left-hand side has determinant one and is thus invertible
by Theorem 4.1.5. Since 〈d〉 contains the ideal 〈a11〉 properly, we have found a pair
of matrices X = I and Y as desired.

(b) An analogous argument works if a11 does not divide all elements in the first column.

(c) If a11 divides all elements the first row and column, then we can eliminate all these
elements by elementary row and column operations. But since 〈a11〉 6= 〈A〉, the entry
a11 cannot be divisor of all entries of A. To proceed, we add a suitable row to the
first row and thus put ourselves into case (a) and continue from there.

• We still have to prove the uniqueness of the resulting diagonal matrix. Let Ji(A) for i ≥ 1
be the ideal in R that is generated by the determinants of i× i-submatrices of A. Again
we have

Ji(XA) ⊆ Ji(A)

for every matrix X, thus also equality of ideals for an invertible matrix X. We deduce

Ji(A) = 〈d11d22 · · · dii〉

and thus the uniqueness of the diagonal elements dii up to multiplication by units of
R.

4.2 Classification of modules over principal ideal domains

We will now see a simple, explicit description of finitely generated modules over a PID. We
start with an existence result:

Lemma 4.2.1 Let M be a finitely generated module over a PID R. Then there exists an
ascending chain a1 ⊆ a2 ⊆ · · · ⊆ ar $ R of ideals of R, such that

M ∼= R/a1 × · · · ×R/ar .

Here we allow ai = 0 and have R/0 ∼= R as R-module.

Proof. We had already seen in Observation 4.1.3 that there exists a morphism f : Rn → Rm of
finitely generated free modules, such that M is isomorphic to the cokernel of f .

Theorem 4.1.6 on the Smith normal form lets us find invertible maps X, Y , such that the
diagram

Rn f // Rm

Y
��

Rn D //

X

OO

Rm

commutes and D is a diagonal matrix, whose elements satisfy the divisibility conditions
d11|d22| . . . |drr with r = min(m,n). We thus have an isomorphism of R-modules:

M ∼= Rm/Im D ∼= R/d11R× · · · ×R/drrR×Rm−r

The factors with dii ∈ R× with units may be omitted. This implies the existence of the stated
decomposition.

The following theorem summarizes our considerations and notes that the description is
unique. We give two equivalent versions.
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Theorem 4.2.2 Let M be a finitely generated module over a PID R.

1. Then there exists exactly one ascending chain a1 ⊆ a2 ⊆ · · · ⊆ ar of ideals in R, such that

M ∼= R/a1 ×R/a2 × · · · ×R/ar .

2. Then there exist prime powers q1, . . . , qt in R such that

M ∼= Rs ×R/q1R× · · · ×R/qtR . (∗)

Here s ∈ N0 is uniquely determined, i.e. it does not depend on the choice of decomposition
(*), and the prime powers qi are determined up to units and ordering.

Proof. • The existence of a decomposition as in 1. has already been established in
Lemma 4.2.1. The existence statement in 2, follows from the other one by choosing for
ai 6= 0 a generator αi, ai = (αi), and writing them as products of pairwise relatively prime
prime powers:

αi =
∏
j

q
(i)
j .

Then we use the Chinese remainder theorem for each i and find

R/ai ∼= R/(q
(i)
1 )×R/(q(i)

2 )× · · · ×R/(q(i)
s ) .

• Conversely we can deduce the uniqueness statement in 1. from the uniqueness statement in
2. by again using the Chinese remainder theorem. It thus remains to show the uniqueness
statement in 2. The key idea is to deduce the uniqueness statement from the uniqueness
of the dimension of vector spaces, over various fields related to the PID R.

• We start with the uniqueness of the rank of the free part. Let Q := Quot(R) the fraction
field of R. Then HomR(M,Q) is a Q-vector space. By the universal property 1.2.2.1 of
the direct sum we have

HomR(M,Q) ∼= HomR(R/q1R,Q)× · · · × HomR(R/qtR,Q)× HomR(R,Q)s .

By Examples 1.1.9 (4) we have HomR(R,Q) ∼= Q. Let a be a nonzero ideal of R. Then
by the universal property of the quotient module

HomR(R/a, Q) ∼= {f ∈ HomR(R,Q) | f |a = 0} .

Every nonzero module homomorphism f : R → Q is injective: let f(1) 6= 0. Then for all
m 6= 0 in the ring R we have f(m) = mf(1) and thus f(m) 6= 0 since there are no zero
divisors in the fraction field Q. Thus the right-hand side contains only the zero morphism,
i.e. for a 6= 0 we have

HomR(R/a, Q) = 0 .

This implies
s = dimQ HomR(M,Q) ,

and so the rank s of the free part does not depend on the decomposition (∗) in 2.
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• We use a similar strategy to verify the independence of the prime powers. For this we
consider for every fixed irreducible p ∈ R the residue field R/pR.

Let M be an R-module. For every n ≥ 1 the quotient pn−1M/pnM is a (R/pR)-vector
space. Define

dnp (M) := dimR/pR(pn−1M/pnM) .

Then we have
dnp (M ⊕N) = dnp (M) + dnp (N) .

We compute dnp (M) in three different cases:

1. We first compute dnp (R).
The multiplication with pn−1 yields a surjection to pn−1R that we compose with a
canonical surjection:

R
·pn−1

� pn−1R � pn−1R/pnR .

Thus we get an isomorphism of R/pR-vector spaces

R/pR
∼−→ pn−1R/pnR .

From this we deduce for all n ∈ N that for R as left module over itself one has

dnp (R) = dimR/pR(pn−1R/pnR) = 1 .

2. Next we consider modules of the form R/pmR.
For n > m we have pn−1(R/pmR) = 0. For n ≤ m we find a surjection

R � R/pmR
·pn−1

� pn−1(R/pmR) �

pn−1(R/pmR)/pn(R/pmR)

with kernel pR. Thus we have

dnp (R/pmR) =

{
0 for n > m
1 for n ≤ m.

3. Finally, we consider modules of the form R/p̃mR, where p̃ is prime and not a unit
multiple of p.
Then the class of p in the quotient ring

R̃ := R/p̃mR

is invertible. Thus multiplication with pn is an isomorphism on R̃ and

dnp (R/p̃mR) = dimR/pR(R̃/R̃) = 0 .

From these three computations we get

dnp (M) = s+ |{i | pn divides qi}| ,

and so the uniqueness of the qi up to unit multiples and ordering follows form the unique-
ness of the dimensions dnp (M).
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Corollary 4.2.3

1. Every finitely generated module M over a PID R is isomorphic to the direct sum of its
torsion submodule and a free module,

M ∼= Tor (M)⊕Rs .

2. A finitely generated torsion-free module over a PID is free. (Conversely, the free modules
for every domain are torsion-free.)

Note that the decomposition into a direct sum is not canonical: the torsion elements form
a well-defined submodule, but the free part is not uniquely determined as submodule. For
example, in the Z-module Z× Z2 both (±1, 0) and (±1, 1) generate a free subgroup of rank 1.

We now consider this structural result in two important special cases: for abelian groups,
i.e. Z-modules, and for K-vector spaces with endomorphisms, i.e. K[X]-modules.

Corollary 4.2.4 Let G be a finitely generated abelian group, considered as finitely generated
module over the PID Z.

1. Then there exists a unique sequence of natural numbers d1, d2, . . . , ds ∈ {0, 2, 3, 4, . . . }
with di|di+1 for i = 1, . . . , s− 1, such that

G ∼= Zd1 × Zd2 × · · · × Zds

Here we allow Z0 = Z/0Z ∼= Z.

2. Then there exist prime powers q1, . . . , qt and a natural number r ∈ N with

G ∼= Zq1 × · · · × Zqt × Zr

The natural number r is uniquely determined by G and it is called the rank of G. The
prime powers are unique up to ordering.

The free factors in the decompositions here are also not uniquely determined as subgroups
of G. The displayed isomorphisms are not canonical, i.e. not distinguished in a unique way.

Observation 4.2.5

• Let V be a finite-dimensional K-vector space and A ∈ EndK(V ) an endomorphism. Then
by Lemma 1.1.15 we may consider V as a K[X]-module, that is finitely generated because
the vector space dimension is already finite. Also for dimension reasons, the free parts as
a K[X]-module vanishes. Thus we can find principal ideals ai = (fi) as in Theorem 4.2.2,
where we specify the generators fi ∈ K[X] uniquely by requiring that they are monic
polynomials.

• Thus we have assigned to every endomorphism a sequence of monic polynomials f1, . . . , fr,
which satisfy the divisibility condition fi|fi−1| . . . |f1. These polynomials are called the
invariant factors of the endomorphism A.

• For every class v ∈ K[X]/ ai we get

f1.v = f1 · v = 0 ,

since f1 = 0 mod fi for all i. Hence f1(A) = 0. Conversely, on the summand K[X]/(f1) it
is exactly the multiples of f1 that act by zero. Thus f1 is the monic polynomial of least
degree, for which f(A) = 0 holds, i.e. the minimal polynomial of A.
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• For every summand of the form K[X]/(f) we now discuss the action of the endomorphism
given by multiplication by X. For this let

f = Xn + an−1X
n−1 + . . .+ a1X + a0 .

Choose as K-basis of K[X]/(f) the classes bi := X i with i = 0, . . . n − 1. Then we
have X.bi = bi+1 for i = 0, . . . n − 2 and X.bn−1 = −

∑n−1
i=0 aibi. We thus find that the

endomorphism is described with respect to this basis by the matrix

Bf :=


0 0 −a0

1 0
...

1
. . .
. . . 0 −an−2

1 −an−1

 ∈M(n× n,K)

which is called the companion matrix of the polynomial f . The resulting normal form of
the endomorphism – blockdiagonal with blocks given by companion matrices for polyno-
mials obeying the divisibility condition – is also called the Frobenius normal form of the
endomorphism.

The special case over algebraically closed fields is especially important.

Corollary 4.2.6 [Jordan normal form] Let K be an algebraically closed field, V a finite-
dimensional K-vector space and A : V → V an endomorphism of V . Then there exists a basis
of V , in which A is block diagonal, where in each block the diagonal entries are constant, only
1s appear directly above the diagonal, and zeros elsewhere.

Proof. As K is algebraically closed is, the prime elements are given (up to unit multiples) by
linear polynomials. By Theorem 4.2.2.2 we find an isomorphism of K[X]-modules

V ∼= K[X]/(X − λ1)n1 × · · · ×K[X]/(X − λt)nt

with ni ∈ N and λi ∈ K for i = 1, . . . , n. In each summand on the right-hand side we choose
as basis the classes of the polynomials

1, (X − λ), (X − λ)2, . . . , (X − λ)n−1 .

Then the multiplication by X, and thus the action of A in the above basis, is given by the
Jordan block since:

X(X − λ)i = λ(X − λ)i + (X − λ)i+1

Similarly one obtains normal forms for fields that are not algebraically closed, e.g. R (see
e.g. [K61, Satz 35.8]).

4.3 Semisimple rings and categories

Here we start into a more thorough discussion of modules over the group rings of finite groups.
Throughout this section we let K be a field of arbitrary characteristic, G a finite group, and
by R := K[G] we denote the group ring of G over K, unless explicitly stated otherwise.

We begin with a general definition:

Definition 4.3.1 A ring R is called self-injective, if R as left module over itself is coregular
in the sense of Definition 3.3.2.

92



Recall that an R-module M is finitely generated, if there exists n ∈ N and a surjective
morphism of R-modules Rn → M . Let us assume that the ring R is self-injective. We call an
R-module finitely co-generated, if there exists n ∈ N and an injective morphism of R-modules
M ↪→ Rn. For finitely generated modules over self-injective rings the following statement holds:

Theorem 4.3.2 Let R be a self-injective ring. Then an R-module that is finitely generated
and finitely cogenerated is projective if and only if it is injective.

Proof. We consider the following chain of implications:

M projective ⇔M direct summand in
⊕

finite R
⇔M direct factor in

∏
finite R

⇔M injective

The first and last implications follow from Theorem 3.3.4. The finiteness follows because in the
proof of Theorem 1.3.5 for a finitely generated module M , we can choose a free module of finite
rank.

Let K be a field. In case one considers finite-dimensional modules over a finite-dimensional
self-injective K-algebra A, one can show [F05, Lemma 1] that a module is projective if and
only if it is injective.

Our goal is the following theorem:

Theorem 4.3.3 Let K be an arbitrary field and G a finite group. Then the group ring
R = K[G] is self-injective. As a consequence, a finite-dimensional G-representation on a K-
vector space is projective if and only if it is injective.

In this theorem it is essential that K is a field and also that the group G is finite. We first
proof the following

Lemma 4.3.4 Let R be a K-algebra. We denote by R∗ the R-module R∗ := HomK(R,K),
induced by the right action of R on itself. Then the R-module R∗ is injective.

Proof. The proof proceeds as in Example 3.3.3.2: We aim to establish an isomorphism between
the functors HomR(−, R∗) and HomK(−, K). For an arbitrary R-module M we have:

HomR(M,R∗)
def
= HomR(M,HomK(R,K)) ∼= HomK(R⊗RM,K) ∼= HomK(M,K) .

The second isomorphism holds because both spaces describe the K-bilinear maps M ×R→ K.
In the last expression we implicitly apply the forgetful functor from R-modules to K-vector
spaces. Thus we have an isomorphism of the functors HomR(−, R∗) and HomK(−, K). The
functor HomK(−, K) is exact, since the field K as module over itself is injective. In this step we
use that we consider the group ring over a field. By the isomorphism of functors, HomR(−, R∗)
is also exact, so R∗ is injective.

The other arguments in Example 3.3.3 can also be generalized, showing e.g. that R∗ is
coregular. The proof Theorem 4.3.3 will follow from the next lemma.

Lemma 4.3.5 Let G be a finite group and R = K[G]. Then the K-linear map

Φ: R∗ → R
f 7→

∑
g∈G f(g)g−1 ,

is an isomorphism of R-modules. Here (g)g∈G is the distinguished basis of K[G].
For the group ring of a finite group the modules R and R∗ are thus isomorphic. Motivated

by the terminology from the theory of Hopf algebras, we call Φ the Frobenius map.
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Proof. The map is obviously bijective, since the preimage of the standard basis element g ∈ R
given by δg−1 ∈ R∗ with δg(g

′) = δg,g′ . We compute that Φ is a morphism of R-modules: for
g0 ∈ G we have

Φ(g0.f) =
∑
g∈G

f(gg0)g−1 =
∑
g̃∈G

f(g̃)g0g̃
−1 = g0Φ(f) .

Note that the sum is well-defined because the group is finite.

One can now ask whether it is possible that all K-linear representations of a given finite
group are projective, i.e. that the category of representations is semisimple in the sense of
Definition 3.1.17. We will first study categories of modules over a ring, in which all objects are
projective, in a more abstract setting.

Definition 4.3.6

1. A module M is called semisimple, if every submodule U of M has a complement D, i.e.
if for every submodule U there exists a submodule D with D ⊕ U = M .

2. A ring is called semisimple if it is semisimple as left module over itself.

Every vector space — so every module over a field — admits by extension of bases comple-
ments and thus is semisimple. Over any ring, the zero module M = 0 is semisimple.

As we have only used left modules to define, when a ring is semisimple, we should actu-
ally call this notion left-semisimple. In Corollary 4.4.5 we will see, however, that every left-
semisimple ring is also right-semisimple.

Theorem 4.3.7 Let R be a ring and M an R-module. Then the following are equivalent:

1. M is an (inner) direct sum of simple submodules.

2. M is a (not necessarily direct) sum of simple submodules.

3. M is semisimple, i.e. every submodule U of M has a complement D.

Proof. • 1.⇒ 2. is clear by definition.

• 2.⇒ 3. we start by considering M =
∑

i∈IMi, a sum of simple submodules Mi. For every
subset J ⊂ I we denote the corresponding inner sum of submodules as

MJ :=
∑
i∈J

Mi .

Let U be the submodule for which we want to find a complement. By Zorn’s lemma, we
can find among the subsets J ⊂ I with MJ ∩U = 0 a maximal subset J (with respect to
inclusion). By the requirement MJ ∩U = 0 on the index set J , the sum MJ +U is direct.
It thus suffices to prove that

MJ + U = M.

Suppose, on the contrary, that MJ +U is a proper submodule of M , then there would be
at least one Mi 6⊂MJ +U . This excludes the option Mi ∩ (MJ +U) = Mi, so since Mi is
simple, we must have Mi ∩ (MJ + U) = 0. But then we also have (Mi +MJ) ∩ U = 0, in
contradiction to the maximality of J .
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• 3. ⇒ 2. starts by noting that property 3. is inherited by submodules. Let U ⊂ N ⊂ M
be submodules, V a complement of U in M , then V ∩N is a complement of U in N .

Let S be the sum of all simple submodules of M . (If M has no simple submodules, this
would mean S = 0.) Now suppose S 6= M , then by 3. we find a nonzero complement D
of S.

Continuing with the assumption D 6= 0 we can find D 3 d 6= 0 and consider Rd, the
submodule of D generated by d. The proper submodules of a module form a partially
ordered set under inclusion, in which every chain has an upper bound. As upper bound
of such a chain of submodules we can take their union. Using Zorn’s lemma we find a
maximal proper submodule U ′ in Rd. Since the submodule Rd also satisfies (3), we find
a complement Rd = U ′ ⊕ E. Then E ∼= Rd/U ′ is simple by maximality of U ′ in Rd, see
Lemma 1.5.2.2. By definition of S we have E ⊂ S, in contradiction to E ⊂ Rd ⊂ D and
D ∩ S = 0.

• 2. ⇒ 1. here we start with M =
∑

i∈I Mi for simple modules Mi. Let X be the set of
all subsets J ⊂ I, such that the sum MJ =

∑
j∈JMj is direct. By ∅ ∈ X this set is

non-empty.

We show that every chain in X has an upper bound in X. Let Y be a totally ordered
non-empty subset of X. Our candidate for an upper bound for Y is I0 := ∪I′∈Y I ′, so our
next goal is to show I0 ∈ X.

The sum MI0 is direct if and only if for every finite subset I1 ⊂ I0 the sum is direct. As
Y is totally ordered, there exists for every finite I1 an I ′ ∈ Y with I1 ⊂ I ′. By Y ⊂ X,
the sum MI′ is direct, and then the smaller sum MI1 is also direct. Thus the sum MI0 is
direct, and so I0 ∈ X.

By Zorn’s lemma we find a maximal element J ∈ X and claim MJ = M . For this it
suffices to show Mi ⊂MJ for all i ∈ I. Suppose this would fail for i0, then Mi0 ∩MJ is a
proper submodule of Mi0 . As Mi0 is simple, we must have Mi0 ∩MJ = 0, and so the sum
Mi0 ⊕MJ is direct, in contradiction to the maximality of J .

Corollary 4.3.8 Every quotient and every submodule of a semisimple module is semisimple.

Proof. For a given submodule U ⊂M , consider the canonical surjection M →M/U . The image
of a simple submodule of M is either zero or isomorphic to the simple submodule. Thus the
quotient M/U is a sum of simple submodules, by Theorem 4.3.7 thus semisimple.

Again by Theorem 4.3.7 we find a complement D for U . Thus the submodule U is isomorphic
to a quotient, U ∼= M/D, and hence semisimple by the previous argument.

Corollary 4.3.9 Let R be a ring. Then the following statements are equivalent.

1. The ring R is semisimple, i.e. as a left module over itself, R is a direct sum of simple
submodules.

2. Every R-module is semisimple, i.e. every R-module is a direct sum of simple submodules.

3. The category R−Mod is semisimple in the sense of Definition 3.1.17, i.e. all R-modules
are projective.

Proof.
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3.⇒2. Let the category R−Mod be semisimple and M an R-module. For every submodule U ⊂
M we have a short exact sequence

0→ U →M →M/U → 0 ,

that splits by Theorem 1.4.7 since M/U is projective. By Theorem 1.4.3 the submodule
U then has a complement in M .

2.⇒1. This implication is trivial since 1. is a special case of 2.

1.⇒3. We need to show that every R-module M is projective, i.e. a direct summand of a free
R-module F . By Theorem 1.3.5, M is a homomorphic image of a free module F , so we
may consider the exact sequence

0→ kerπ → F
π→M → 0

The ring R is semisimple by assumption, and thus also F , as it is a direct sum of copies
of R. By Theorem 4.3.7 ker π has a complement, which is isomorphic to M , i.e. F ∼=
M ⊕ kerπ. Thus M is projective.

Theorem 4.3.10 Let R be a semisimple ring. Then as R-module R has finite length and
every simple R-module is isomorphic to a simple submodule of R. In particular, there exist
only finitely many simple R-modules up to isomorphism.

Proof. We find a decomposition of R as a direct sum simple R-modules, R = ⊕Mi with Mi

simple. As unital ring,R cyclic as module over itself with generator 1 ∈ R = ⊕Mi. The generator
can only have nonzero components in finitely many summands, so R has finite length. For an
arbitrary simple module M we consider a generator x ∈M to get a surjection

R ∼= ⊕Mi → M
r 7→ rx

This corresponds to a family (Mi →M) of module homomorphisms. Since the map is surjective
at least one of the maps out of Mi must be nonzero. By Schur’s lemma 1.5.5 this must be an
isomorphism, along which we can identify M with a submodule of R.

Definition 4.3.11

1. Let R be a ring and M an R-module. Given a simple R-module E, we denote by
ME ⊂ M the sum of all submodules of M that are isomorphic to E and call this the
isotypic component of M of type E.

2. The submodule generated by all simple submodules of M is called the socle of M and it
is denoted by soc(M).

Theorem 4.3.12 [Decomposition into isotypic components]

1. The socle is the largest semisimple submodule of M . In particular, a module is semisimple
if and only if it is equal to its socle.

2. Let R be a ring and irr(R) system of representatives for the isomorphism classes of
simple R-modules. Then the socle soc(M) decomposes into the direct sum of isotypic
components:

soc(M) =
⊕

E∈irr(R)

ME .
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Proof. • The socle is a sum of simple modules and, thus, semisimple by Theorem 4.3.7.

• As soc(M) is semisimple, we only have to show that the sum of isotypic components is
direct, i.e. that we have

ME ∩
∑
F 6=E

MF = 0

for all E. For this it suffices to show that every simple submodule in a sum of simple
submodules is isomorphic to one of the summands. Then every simple submodule of ME

is isomorphic to E, but no simple submodule of
∑

F 6=EMF can be isomorphic to E. Thus
the intersection is trivial.

So we let E be a simple submodule in a sum M :=
∑

j∈JMj of simple modules. Since
the sum

∑
j∈JMj is semisimple, the simple submodule E is also a quotient of this sum.

As in the proof of Theorem 4.3.10 we deduce that E is also isomorphic to a simple direct
summand in M .

We can now provide a condition under which the category of representations of a finite
group G on K-vector spaces is semisimple.

Theorem 4.3.13 [Maschke] Let G be a finite group and K a field, whose characteristic does
not divide the order of the group |G|. Then the category of representations of G on K-vector
spaces is semisimple.

There exists a simple method of proof in the cases K = R or K = C; since this method
admits many generalizations in other contexts we first consider these special cases. It is based
on the following lemma.

Lemma 4.3.14 If V is a representation of a finite group G over K = R or K = C, then
there exists a G-invariant inner product on V , i.e. (gv, gw) = (v, w) for all elements g ∈ G and
v, w ∈ V .

Proof. We choose on V an arbitrary sesquilinear inner product b : V × V → K, for example by
declaring an arbitrary basis to be orthonormal. Then the finite sum

(v, w) :=
∑
g∈G

b(gv, gw)

defines a G-invariant inner product. This is clearly sesquilinear and positively definite since
(v, v) =

∑
g∈G(gv, gv) is a finite sum positive real numbers and thus positive. The G-invariance

follows from
(gv, gw) =

∑
g̃∈G

b(g̃gv, g̃gw) = (v, w) .

Proof of Maschke’s Theorem 4.3.13 for K = R or K = C and finite-dimensional representations..
If W ⊂ V is a subrepresentation, then there exists an orthogonal complement W⊥ ⊂ V since
V is finite-dimensional. With respect to an invariant inner product, the complement W⊥

is a subrepresentation: if (v, w) = 0 for all w ∈ W then, by invariance, we also have
(gv, w) = (v, g−1w) = 0, for all g ∈ G and w ∈ W . We thus have the following orthogonal
decomposition into subrepresentations:

V = W ⊕W⊥ .

Now that we know that complements exist, semisimplicity follows from Theorem 4.3.7.
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This technique is also called “Weyl’s unitarian trick”. In case of infinite-dimensional in-
ner product spaces, one additionally has to assume the completeness of the subspace W , to
conclude that an orthogonal complement exists. The general case, i.e. for general fields and
representations of infinite dimension, needs more work.

Proof of Maschke’s Theorem 4.3.13, general case. By Theorem 4.3.7 it suffices to show that
every submodule W of V has a complement.

• If i : W ↪→ V is a subrepresentation, then we can find a retraction in the category of
K-vector spaces, i.e. we pick a K-linear map

π : V → W

such that π ◦ i = idW . The problem is that π is in general only a map of vector spaces,
but not of G-representations. We intend to improve the map by averaging over the group
G so that it intertwines the action of G. We thus consider the map ψ : V → W :

ψ :=
1

|G|
∑
g∈G

g ◦ π ◦ g−1

This only makes sense when the characteristic of K does not divide the order of the group.
(Compare this expression with the proof of Theorem 4.3.3, where we also saw a sum over
group elements, in which g and g−1 appear in pairs.

• For arbitrary h ∈ G we now compute:

h ◦ ψ =
1

|G|
∑
g∈G

hg ◦ π ◦ g−1 =
1

|G|
∑
g̃∈G

g̃ ◦ π ◦ g̃−1h = ψ ◦ h ,

where we have substituted g̃ := hg. Thus we see ψ ∈ HomG(V,W ). Furthermore we have

ψ ◦ i =
1

|G|
∑
g∈G

g ◦ π ◦ g−1 ◦ i =
∑
g∈G

1

|G|
g ◦ π ◦ i ◦ g−1 = idW ,

where in the second equation we use that i is a G-morphism and in the third equation
π ◦ ι = idW . Here it becomes clear, why one has to divide by the group order |G|, which
imposes the stated restriction on the characteristic of the field.

• By Theorem 1.4.3 V is the inner direct sum of ι(W ) and kerψ.

For any group G and field K, such that char(K) does not divide the group order |G|, the K-
linear representation theory of G can thus be reduced to understanding simple representations
and, by Theorem 4.3.10, understanding the decomposition of the group ring into simple left
modules.

4.4 Structure theory of semisimple rings

Semisimple rings resp. semisimple algebras over a field can be described very explicitly. These
descriptions will be used in the next section to study semisimple group rings.

We recall Schur’s lemma 1.5.5: every homomorphism Φ: M1 → M2 is injective or zero,
whenever M1 is a simple module, and is surjective or zero, whenever M2 is a simple module.

Corollary 4.4.1
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1. For every simple R-module M , the endomorphism ring EndR(M) is a division ring, i.e. a
ring, in which every nonzero element has a multiplicative inverse.

2. Homomorphisms between semisimple modules preserve isotypic components.

3. If R is commutative, then for every ideal I ⊂ R the quotient R/I is a ring and we have
ring isomorphisms

EndR(R/I) ∼= EndR/I(R/I) ∼= R/I .

It follows that the module R/I is simple if and only if the left ideal I is maximal, cf.
Lemma 1.5.2. The endomorphism ring of a simple module over a commutative ring is thus
a field.

A finitely generated semisimple module M always has finite length: Let e1, . . . , en be a
finite generating set of M . Each of the finitely many generators has nonzero components in
only finitely many summands in the decomposition M =

⊕
iMi into simple modules. Thus

only finitely many components M1, . . . ,Mr can be hit, and we can deduce M ∼= M1⊕· · ·⊕Mr.

Theorem 4.4.2 Let R be a ring and M a finitely generated semisimple R-module. Then the
endomorphism ring EndR(M) is isomorphic to a finite product of matrix rings over division
rings.

Proof. The module M is semisimple and decomposes into isotypic components M ∼= ⊕ki=1M
ni
i

with ni ∈ N and Mi pairwise non-isomorphic simple R-modules, see Theorem 4.3.12. As M is
finitely generated, the decomposition is a finite direct sum. Then we have

EndR(M) = ⊕ijHom(Mni
i ,M

nj
j ) ∼= ⊕iM(ni × ni,EndR(Mi)) .

By the Corollary 4.4.1.1 of Schur’s lemma, EndR(Mi) is a division ring.

Theorem 4.4.3 [Artin–Wedderburn theorem] Every semisimple ring R is isomorphic to
a finite product of matrix rings over division rings. Any commutative semisimple ring R is
isomorphic to a finite product of fields.

Proof. As R is semisimple, it has finite length as a left module over itself, see Theorem 4.3.10.
By Theorem 4.4.2 we have

EndR(R) ∼=
∏
i

M(ni × ni, Di)

for some ni ∈ N and certain division rings Di. For every ring R there exists an isomorphism by
right multiplication,

Ropp ∼→ EndR(R)
r 7→ (ϕr : x 7→ xr)

The inverse associates to a module morphism ϕ0 :R→R R the elements ϕ0(1) ∈ R. Note that

ϕ0(r) = ϕ0(r · 1) = rϕ0(1)

so that ϕ0(1) indeed characterizes ϕ0 uniquely. Thus

R ∼= (Ropp)opp ∼=
∏
i

M(ni × ni, Di)
opp ∼=

∏
i

M(ni × ni, Dopp
i ) ,

where the last isomorphism is given by transposition of the ni × ni-matrices.
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Remark 4.4.4 The decomposition of a semisimple ring R

R ∼=
∏
i

M(ni × ni, Di)

is unique up to reordering.

Corollary 4.4.5 A ring is right-semisimple if and only if it is left-semisimple.

If instead of arbitrary rings we work with algebras over fields, then for an algebraically
closed field K, the semisimple K-algebras can be explicitly described. For this we need the
following lemma:

Lemma 4.4.6 Let F be an algebraically closed field. If D is a finite-dimensional division
algebra over F , then D = F .

Proof. For every element x ∈ D, the family (1, x, . . . , xm) with m := dimF D is linearly depen-
dent over the field F . Thus there exists a monic polynomial f ∈ F [X] with f(x) = 0. Choose
such a polynomial f of minimal degree. If f were reducible, f = f1 · f2, then 0 = f1(x) · f2(x)
for non-constant polynomials of strictly lower degree than f . Since D is a division algebra, we
must have f1(x) = 0 or f2(x) = 0, in contradiction to the minimality of f .

Since F is algebraically closed, the irreducible polynomial f is of the form f(X) = X − a
with a ∈ F . Thus x = a and D = F .

Over the field R, which is not algebraically closed, there are different division algebras: the
fields R and C and the quaternions H, a non-commutative division algebra.

From Theorem 4.4.3 we now get:

Corollary 4.4.7 Let K be an algebraically closed field. Every finite-dimensional semisimple
K-algebra is isomorphic to a finite product of matrix rings with entries in K.

We can also combine Lemma 4.4.6 with Schur’s lemma 4.4.1.1 to get:

Corollary 4.4.8 Let K be an algebraically closed field and R a K-algebra. Let M be a
simple R-module of finite dimension. Then we have an isomorphism of rings:

K
∼→ EndR(M)

λ 7→ λidM .

Such a module is also called absolutely simple.

Proof. As K is a field, we know that the map is injective. On the other hand, EndR(M) is a
division algebra over the algebraically closed field K and thus isomorphic to K by Lemma 4.4.6.
Thus the K-linear map is also surjective.

We also use the Artin–Wedderburn Theorem 4.4.3 to read off the representation theory of
semisimple rings.

Corollary 4.4.9 The isomorphism classes of simple representations of a semisimple ring are
in bijection to the individual factors of the ring; only the corresponding factor acts non-trivially
on the simple representation. Associated to the factor M(ni×ni, Di) is a simple representation
given by acting with matrices on column vectors in (Di)

n.
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4.5 Fourier transform for groups

We would like to avoid assuming that the group algebra of a finite group G over a field K is
semisimple, and thus need an additional tool. Let M be an R-module. Then M is also a module
over the ring EndR(M):

EndR(M)×M → M

(ϕ,m) 7→ ϕ(m) .

Every ring element x ∈ R defines by scalar multiplication

λx : M → M
m 7→ x.m

an element of End(M) that commutes with any ϕ ∈ EndR(M), i.e. that is contained in
EndEndR(M)(M). In particular, we have a ring homomorphism

ϕJac : R→ EndEndR(M)(M) .

Theorem 4.5.1 (Jacobson density theorem) Let R be a ring and M a semisimple R-module.
Let f ∈ EndEndR(M)(M) and finitely many elements m1, . . . ,mr ∈M be given. Then there exists
an x ∈ R with f(mi) = xmi for all i.

This statement is often expressed by saying that the image ϕJac(R) in EndEndR(M)(M) is
dense: We can encode the action of every morphism f ∈ EndEndR(M)(M) on finitely many
elements of the module as multiplication with a scalar x ∈ R.

Proof. We first consider the case r = 1, i.e. with a single element m1 ∈M . As M is semisimple,
the submodule Rm1 ⊂M has a complement D by Theorem 4.3.7. We now consider the direct
sum decomposition

M = Rm1 ⊕D .

The idempotent map
π : M � Rm1 ↪→M,

defined as the composite of the canonical surjection and injection, is an element of the endo-
morphism ring EndR(M). As f ∈ EndEndR(M)(M), we must have

f ◦ π = π ◦ f ,

and so
f(m1) = f ◦ π(m1) = π ◦ f(m1) .

This implies f(m1) ∈ Rm1 and so there exists an element x ∈ R, such that

f(m1) = xm1 .

For the general case r > 1 we consider the finite direct sum of copies of M

(m1, . . . ,mr) ∈M ⊕ · · · ⊕M ,

which is a semisimple R-module, and the map

f × f × · · · × f ,

which indeed commutes with all elements of

EndR(M ⊕ . . .⊕M) ∼= M(r × r,EndRM),

and then we use the case r = 1.
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Remark 4.5.2 We explain the name density theorem, using some elementary topology. 2 We
endow the set underlying the module M with the discrete topology and EndEndR(M)(M) with
the compact-open topology which has by deifnition the subbasis

{W (K,U) | K ⊂M compact and U ⊂M open } ,

where
W (K,U) := {g ∈ EndEndR(M)(M) | g(K) ⊂ U} .

We now claim:
The image of the ring homomorphism

ϕJac : R→ EndEndR(M)(M) .

is dense in EndEndR(M)(M) if and only if for every morphism f ∈ EndEndR(M)(M) and and any
finite set F ⊆M there exists a ring element x ∈ R such that f(m) = xmi for all m ∈ F .

Suppose that the image of ϕJac is dense. Then any open neighborhood U of f has non-empty
intersection with Im (ϕJac). Given a finite subset F ⊂M , the finite intersection of open sets

U := ∩m∈FW ({m}, {f(m)})

is an open neighbourhood of f . Thus, there exists x ∈ R such that ϕJac(x) ∈ U . By definition
of U , this implies for x that f(m) = x.m.

Conversely, suppose that for any f ∈ EndEndR(M)(M) and any finite subset F ⊂ M , there
exists x ∈ R such that f(m) = x.m for all m ∈ M . Now let U ∈ EndEndR(M)(M) be an open
neighbourhood of f . By definition of the compact-open topology, we can write U in the form

U = ∪i∈I (∩j∈JiW (Kij, Vij))

where all index sets Ji are finite, each Kij ⊂M is compact and thus finite and Vij ⊂M is open.
There is at least one k ∈ I such that f ∈ ∩j∈JkW (Kkj, Vkj). Then K := ∪j∈JkKkj is, as a finite
union of finite sets, a finite subset of M . By assumption, we find x ∈ R such that f(m) = x.m
for all m ∈M . For this x, we have ϕJac(x) ∈ ∩j∈JkW (Kkj, Vkj) ⊂ U . Thus the image of ϕJac is
dense in EndEndR(M)(M) .

Corollary 4.5.3 [Wedderburn] If K is an algebraically closed field and A a subring of M(n×
n,K), such that Kn is simple as an A-module, then A is the entire matrix ring,

A = M(n× n,K) .

Proof. As K is algebraically closed and Kn is a simple A-module, by Corollary 4.4.8 of Schur’s
lemma EndA(Kn) ∼= K. As a simple A-module, Kn is also semisimple; by the density theorem
4.5.1 A is dense in EndEndA(Kn)(K

n) = EndK(Kn). Since Kn is generated by finitely many
mi ∈ Kn as K-vector space, linear maps can be determined on finitely many values. This
implies the surjectivity of ϕJac : A→ EndK(Kn).

Remark 4.5.4 One can also give a coordinate-free description of this theorem: If K is
an algebraically closed field and V a finite-dimensional K-vector space and A ⊂ EndK(V ) a
subring, such that V is simple is as ab A-module, then A = EndK(V ). This version is especially
helpful for seeing why the condition “algebraically closed” is necessary: is K ⊂ L is a finite
field extension and we consider the subring L ⊂ EndK(L), where an element of L acts by left
multiplication on L. Then L is a simple L-module over itself, but if K 6= L then dimension
reasons already imply L 6= EndK(L).

2I am grateful to Max Demirdilek for bringing up this argument.
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Corollary 4.5.5 Let K be an algebraically closed field and V an irreducible finite-
dimensional representation of the group G over K. Then the action of G on V defines a
surjection

K[G] � EndK(V )

Proof. Apply Corollary 4.5.3, to the image of K[G] in EndK(V ).

Theorem 4.5.6 [Fourier transform] Let K be an algebraically closed field of arbitrary char-
acteristic and G a finite group. Let L1, . . . , Lr be a system of representatives of the isomorphism
classes of irreducible representations of G.

1. The action of G defines a surjection of rings

F : K[G] � (EndKL1)× · · · × (EndKLr) . (2)

2. If the characteristic of the field K does not divide the order |G| of the group, then this is
a ring isomorphism.

Proof. 1. As K is algebraically closed, the semisimple K[G]-module M := L1⊕ · · ·⊕Lr has
endomorphism ring

EndK[G](L1 ⊕ · · · ⊕ Lr) = K ×K × · · · ×K .

Thus we have

EndEndK[G]
(M) = EndK×···×K(M) = EndK(L1)× . . .EndK(Lr)

and the surjectivity follows from the density theorem 4.5.1.

2. If the characteristic of K does not divide the order of the group, then by Maschke’s
Theorem 4.3.13 the group ring K[G] is semisimple, i.e. a direct sum of simple subrep-
resentations. Then the isomorphism follows from Theorem 4.4.3. Alternatively, one can
consider a ∈ K[G] in the kernel of the surjection. Then left multiplication with a induces
the zero map on every simple module, and thus on every semisimple module, and thus
also on the regular module K[G]. Writing a =

∑
λgg we get ae = 0, and so λg = 0 for all

group elements g ∈ G, hence a = 0.

It is an important goal to describe for every pair of field K and group G all irreducible
K-linear representations of G. (Ideally, one would then also like to describe tensor products
of representations.) This information is not sufficient to describe the group ring as a ring,
when it is not semisimple. However, when it is semisimple, e.g. in characteristic zero, then this
information is indeed sufficient. We now collect facts about irreducible representations in the
semisimple case.

From Theorem 4.5.6 we immediately get:

Corollary 4.5.7 Let K be an algebraically closed field and G a finite group, whose order
is not divisible by the the characteristic of K. Let L1, . . . , Lr be a system of representatives of
the isomorphism classes of simple representations. Then we have

|G| = (dimK L1)2 + (dimK L2)2 + · · ·+ (dimK Lr)
2

Corollary 4.5.8 Under the same assumptions we have: There exist as many isomorphism
classes of simple representations of G as conjugacy classes in G.
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Proof. The centre Z(R) of a ring is

Z(R) := {z ∈ R | za = az for all a ∈ R} .

It is a commutative subring of R. Warning: in general the centre Z(K[G]) of the group ring
K[G] of a group G is distinct from the group ring of the centre Z(G) of the group; but we have
K[Z(G)] ⊆ Z(K[G]).

By Theorem 4.5.6, the dimension dimK Z(K[G]) of the group ring of a finite group equals
the number of inequivalent irreducible representations,

dimK Z(K[G]) = |iso classes of simple representations| .

For an element in the centre Z(K[G]) of the group ring we make the ansatz z =
∑
h

λhδh with

λh ∈ K. By comparing

zg =
∑
h∈G

λhh · g =
∑
h∈G

λhg−1h

gz =
∑
h∈G

λg−1hh .

we find λghg−1 = λh for all g, h ∈ G. Here one has to choose one coefficient for each conjugacy
class of G, and so

dimK Z(K[G]) = |conjugacy classes| .
By comparing the two formulas for dimK Z(K[G]) we conclude the desired statement.

Remark 4.5.9 Here we explain the relation to the usual Fourier transform. Consider all
complex numbers of unit norm as an abelian group with respect to multiplication,

S1 = {z ∈ C | |z| = 1} .

One can show that all irreducible, continuous, finite-dimensional representations are one-
dimensional. A representative for all isomorphism classes can be described by the group homo-
morphism

Ln : S1 → GL(1,C) ∼= C× for n ∈ Z .
z 7→ zn

As analogue of the group ring we consider continuous complex-valued functions on S1, C0(S1),
that we may identify with periodic functions on R. The product is given by the convolution

(f ∗ g)(h) =

∫
S1

f(hx)g(x−1)dx,

cf. Definition 1.1.16. The continuous function f ∈ C0(S1) acts on a continuous finite-
dimensional representation V by

fv =

∫
S1

f(z)ρV (z)(v) dz for v ∈ V

and, in particular, on the irreducible representation Ln by multiplication with∫
S1

f(z)zn dz ∈ C ,

which are exactly the Fourier coefficients of f . The map in Theorem 4.5.6

C0(S1)
∼−→
∏
n∈Z

EndCLn ∼=
∏
n∈Z

C

sends a function f ∈ C0(S1) to its sequence of Fourier coefficients.
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4.6 Characters

In this section we let K be an algebraically closed field and G a finite group, such that char K
does not divide the the order |G| of the group. Then we have by Theorem 4.5.6 an isomorphism
of rings

F : K[G]
∼−→ (EndKL1)× · · · × (EndKLr) .

Definition 4.6.1 Let L be a simple representation of G. By the isomorphism from Theo-
rem 4.5.6 there exists a unique element eL ∈ K[G], that acts as the identity on L and by zero
on any simple representation M of G, that is not isomorphic to L:

eL : M →M =

{
idM if M ∼= L

0 if M simple, M 6∼= L

This element
eL = F−1

(
idEndKL

)
∈ K[G]

is called the (central) projector or idempotent associated with the simple representation L.

Lemma 4.6.2 Let (Li)i=1...r be representatives of the isomorphism classes of irreducible
representations of G and ei ∈ K[G] the associated central idempotents of the group ring. Then
we have

ei · ej = δijei
1 = e1 + · · ·+ er

and the family (ei)i=1,...r of idempotents forms a basis of the centre of K[G].

Proof. A direct consequence of Theorem 4.5.6 on the Fourier transform.

We aim to express the idempotents (eL) explicitly and need the following definition:

Definition 4.6.3 For a finite-dimensional representation of a group G on a K-vector space
V the character

χV : G→ K

is defined by χV (g) = Tr V g ≡ Tr V ρ(g). This function on the group G can be extended to a
linear form on the group algebra K[G], which we also denote by χV ∈ K[G]∗:

χV : K[G]→ K

By linearity of the trace we have χV (h) = Tr V h for every h ∈ K[G].

Example 4.6.4 The group algebra K[G] is, like every ring, a module over itself, the so-called
regular module. This left action is given by

ρ(g) : K[G] → K[G]

ρ(g)
(∑
h∈G

λhh
)

=
∑
h∈G

λh gh .

We can thus compute the character of the regular module:

χK[G](g) = Tr K[G]ρ(g) =

{
|G| for g = e
0 otherwise.
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We recall the isomorphism of K[G]-modules from Lemma 4.3.5, the Frobenius map:

Φ: K[G]∗ → K[G]
f 7→

∑
g∈G f(g)g−1 .

Theorem 4.6.5 [character projector formula] The Frobenius map Φ relates the character
χL ∈ K[G]∗ and the projector eL ∈ K[G] for a simple representation L:

eL =
dimK L

|G|
Φ(χL) .

Proof. For every K[G]-module M we have a ring homomorphism K[G]
ρM→ EndK(M) and thus

consider the map

τM : K[G]∗
Φ→ K[G]

ρM→ EndK(M).

Using the character of the regular module from Example 4.6.4 we find for an arbitrary
function f ∈ K[G]∗:

(∗) Tr K[G]

(
ρ(g)τK[G](f)

)
=
∑
h∈G

f(h)Tr K[G] gh
−1 = |G|f(g) .

We are looking for the function fi ∈ K[G]∗ that is the preimage of the ith projector under the
Frobenius map, Φ(fi) = ei. For this function and every K[G]-module L we have the equation
τL(fi) = ρL(ei).

Now we compute

fi(g) =
1

|G|
Tr K[G]ρ(g)τK[G](fi)

=
1

|G|

r∑
j=1

Tr EndK(Lj)(ρLj(g))∗ ◦ ρLj(ei)∗ .
(∗)

where we have first used (∗) and then the isomorphism from Theorem 4.5.6. To evaluate the
result we will use the following linear algebra lemma.

Lemma 4.6.6 If L is a finite-dimensional K-vector space and A : L → L a K-linear map,
then the linear map given by postcomposing with A

A∗ : EndKL → EndKL
ϕ 7→ A ◦ ϕ

has trace
Tr EndKL

A∗ = dimK L · Tr LA

Proof. Without loss of generality let L = Kn. Then EndK(Kn) ∼= M(n × n,K). The map
multiplies the matrix associated with A on the left onto an arbitrary n × n matrix. Here one
multiplies every column vector of this matrix by A. Thus A∗ acts on every column of the
n × n-matrix like A on Kn. Thus the matrix of A∗ is block diagonal with n blocks of type
A.

Proof. Proof of Theorem 4.6.5, continued Equation (∗) implies

fi(g) =
r∑
j=1

dimK Lj
|G|

Tr Lj(ρ(g))Lj ◦ ρLj(ei) =
dimK Li
|G|

χi(g) .
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Remarks 4.6.7 The familiar properties of the trace immediately imply:

1. The character is constant on conjugacy classes, i.e. it is a class function:

χL(ghg−1) = χL(h) for all g, h ∈ G

By linear extension we consider the space of class functions as a vector subspace of the
dual space K[G]∗.

2. If V and W are representations of G, then for the direct sum we have χV⊕W = χV +χW .

3. If V and W are G-representations, then the tensor product of vector spaces V ⊗KW has
the structure of a G-representation by

g(v ⊗ w) := (gv)⊗ (gw) .

Then we have
χV⊗W = χV · χW .

Warning: this tensor product should not be confused with the tensor product V ⊗K[G] W
of a right and a left module, which carries only the structure of a K-vector space; here it
is actually a quotient of V ⊗K W .

4. For a G-representation V the dual space V ∗ = HomK(V,K) with the action

(gλ)(v) = λ(g−1v) for λ ∈ V ∗, g ∈ G , v ∈ V

is called the contragradient representation. Then we have

χV ∗(g) = χV (g−1) .

To learn more about characters we define another product on K[G]∗ (the first was the
pointwise product), by declaring the Frobenius map to be an algebra isomorphism

K[G]∗ → K[G]opp.

The resulting product need not be commutative.

Definition 4.6.8 For two functions f1, f2 ∈ K[G]∗ we define the convolution product by

f1 ? f2(h) := Φ−1(Φ(f1) · Φ(f2))(h)

= Φ−1(
∑

h1,h2∈G f1(h1)f2(h2)h−1
1 h−1

2 )(h) =
∑

h1·h2=h f1(h1) · f2(h2) .

Lemma 4.6.9 Let (Li) be a system of representatives for the isomorphism classes of simple
K-linear representations of a finite group G. Then for the convolution product of the characters
we have

χLi ? χLj = δij
|G|

dimK Li
χLi

Proof. In the group algebra K[G] we have

eLi · eLj = δijeLi

and using χL = |G|
dimK L

Φ−1(eL) we compute

χLi ? χLj =
|G|2

dimK Li dimK Lj
Φ−1(eLi · eLj) =

|G|2

dimK Li dimK Lj
δijΦ

−1(eLi) = δij
|G|

dimK Li
χLi .
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Theorem 4.6.10 Let G be a finite group and K a field of characteristic zero. Then the
dimension of any simple G-representation divides the order |G| of the group.

Proof. Let L be a simple representation. Let n = |G| be the order of the group. Then we have
gn = 1 for all g ∈ G. The value χL(g) of the character is the trace, i.e. the sum of eigenvalues,
of ρ(g). Thus χL(g) is an element of the ring Z[ζ], with ζ a primitive nth root of unity.

Let I ⊂ Z[ζ] be the ideal generated by the values of the character. Lemma 4.6.9 implies the
inclusion

I ⊃ |G|
dimK L

I .

From number theory we know that Z[ζ] is a finitely generated free abelian group. By Theo-
rem 4.1.1 the subgroup I is also finitely generated and free, and thus torsion-free. Hence we
have I ∼= Zr for some r ∈ N and we must have

|G|
dimK L

∈ Z ,

because only scaling by an integer maps Zr to itself.

Theorem 4.6.11 On the vector space K[G]∗ we consider the symmetric bilinear form

(ϕ, ψ) :=
1

|G|
∑
g∈G

ϕ(g)ψ(g−1)

Then the characters form an orthonormal basis for the space of class functions with respect to
this bilinear form.

Proof. By Definition 4.6.8 of the convolution product we have

(ϕ, ψ) =
1

|G|
(ϕ ∗ ψ)(e)

with e ∈ G the neutral element. Let (Li) be a system of representatives for for the isomorphism
classes of simple representations. Evaluating the equality in Lemma 4.6.9 on the neutral element
e and noting

χL(e) = Tr Lρ(e) = Tr LidL = dimK L ,

we get

(χLi , χLj) = δij
1

|G|
|G|

dimK Lj
χLj(e) = δij .

In particular, the characters of simple representations are linearly independent in the space of
class functions. By Corollary 4.5.7 they also span the space of class functions, and thus form a
basis.

If the group algebra K[G] is not semisimple, then the characters only span a proper subspace
of the space of class functions.

Corollary 4.6.12 Two finite-dimensional representations of a finite group over an alge-
braically closed field of characteristic zero are isomorphic if and only if they have the same
character.

Proof. Since the group algebra is semisimple by Maschke’s Theorem 4.3.13, Corollary 4.3.9
implies that every finite-dimensional representation is a finite direct sum of simple represen-
tations. We can compute the multiplicity of a given simple representation L in a direct sum
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decomposition of the representation V into simples as follows: if V = ⊕ri=1niLi then for the
character we get χV =

∑r
i=1 niχLi and thus (χL, χV ) = nL.

Thus if two representations have the same character, then the irreducible representations
appear with the same multiplicities ni, and both representations are isomorphic to the direct
sum ⊕ri=1niLi.

Corollary 4.6.13 Let s ∈ G and let c(s) be the number of group elements in the conjugacy
class of s. Then we have

r∑
i=1

χi(s)χi(s
−1) =

|G|
c(s)

;

If t ∈ G is not conjugate to s, then we have

r∑
i=1

χi(s)χi(t
−1) = 0 .

Proof. For s ∈ G let fs be the class function that takes the value one on the conjugacy class of
s and zero on all other conjugacy classes. Since the characters form an orthonormal basis for
the class functions by Theorem 4.6.11, we can expand

fs =
r∑
i=1

λiχi with coefficients λi = (fs, χi) =
c(s)

|G|
χi(s

−1).

Then we have

fs(t) =
c(s)

|G|

r∑
i=1

χi(s
−1)χi(t) .

We specialize to the case of complex group algebras.

Corollary 4.6.14 Consider on the dual of the complex group algebra C[G] the (hermitian)
inner product 〈·, ·〉 given by

〈ϕ, ψ〉 =
1

|G|
∑
g∈G

ϕ(g)ψ(g) .

Then the simple characters form an orthonormal basis in the space of class functions.

Proof. • For every character χ = χV over C we will show

χ(g−1) = χ(g) .

For every complex vector space (V,+, ·) there exists another complex vector space
(V ,+, ∗) which is equal as abelian group, but with the scalar multiplication twisted by
conjugation:

λ ∗ v := λ · v for all λ ∈ C, v ∈ V .

Here λ ∈ C is the complex conjugate of λ ∈ C.

• If V is a G-representation, then so is V (with the same structure map!). With respect to
the chosen basis of V the action is described by matrices with complex conjugate entries.
Thus we have

χV (g) = χV (g) .
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• On the other hand we know from Remarks 4.6.7(4), that for the contragradient represen-
tation we have

χV ∗(g) = χV (g−1)

It thus suffices to exhibit an isomorphism of G-representations

V ∗ ∼= V .

By Lemma 4.3.14 there exists a G-invariant inner product on V . We define a linear map

ι : V ∗ → V

by requiring for ϕ ∈ V ∗
ϕ(v) = 〈v, ι(ϕ)〉

for all v ∈ V . Since 〈·, ·〉 is non-degenerate, this defines a bijection. The map ι is even a
G-morphism, because for all g ∈ G, v ∈ V , and ϕ ∈ V ∗ we have:

〈v, ι(gϕ)〉 = gϕ(v) = ϕ(g−1v) = 〈g−1v, ι(ϕ)〉 = 〈v, gι(ϕ)〉 .

Here we used the definition of ι, the action of g on V ∗, again the definition of ι, and the
G-invariance of the inner product.

Remark 4.6.15 The values of characters of the irreducible complex representations of a
finite group G are collected in the form of a character table. The columns of such a table are
indexed by representatives of conjugacy classes, and the the rows are indexed by irreducible
representations. The table contains the values of the characters of the irreducible representations
on the elements of the conjugacy class. Above the conjugacy classes one typically records in a
separate row their sizes, so that one can also read off the values of the inner product on the
space of class functions.

Examples 4.6.16

1. The irreducible complex representations of the symmetric group S3 Are the trivial repre-
sentation triv, the sign representation sign and the 2-dimensional reflection representation
refl on C3/C(1, 1, 1)t induced by permuting coordinates in C3. This results from extend-
ing scalars from R to C in the familiar interpretation of S3 as the symmetry group of an
equilateral triangle. In this picture, the odd permutations act by reflections in three lines
through the origin in R2, which are spaced at 60 degree angles relative to each other.

If we choose two odd transpositions s, t ∈ S3, then the elements of are S3 =
{e, s, t, sts, ts, st}. The character table has the form

1 3 2
e s, t, sts ts, st

triv 1 1 1
sign 1 −1 1
refl 2 0 −1

Only the lowest row poses any challenges. To see that it is plausible, note that every
reflection in a line in the plane has trace zero, and every rotation by 120 degrees has trace
−1 = ζ3 + ζ3 with ζ3 a primitive third root of unity. Checking the orthogonality relations
from Corollary 4.6.14 and Corollary 4.6.13 is left as an exercise.
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2. To determine the one-dimensional complex irreducible representations of a cyclic group
Cn = 〈g〉 with a generator g and relation gn = e we make the ansatz ρ(g) = w with
w ∈ GL(1,C) ∼= C×. The relation implies 1 = ρ(gn) = ρ(g)n = wn. We thus find n
one-dimensional irreducible representations with

χh(g
k) = exp(2πi

kh

n
) ,

indexed by h ∈ Z/nZ. The characters are apparently orthogonal, as we have:

1

n

n−1∑
k=0

e
2πik
n

(h−h′) = δ mod nZ
h,h′ .

For the tensor product of these representations we see χhχh′ = χh+h′ mod n. In fact we
have found all irreducible representations: in an abelian group all conjugacy classes have
exactly one element. For a finite abelian group there are as many isomorphism classes of
simple representations as group elements. The square sum of dimensions of the n one-
dimensional representations equals the order of the group |Cn| = n.

3. The dihedral group Dn is defined as the symmetry group of the regular n-gon. It contains
the rotations by multiples of 2π

n
as cyclic subgroup of order n. Additionally it contains

n reflections in lines. As generator we choose the rotation r by 2π
n

and one reflection s.
Then er have the relations

rn = 1, s2 = 1 and rs = sr−1 .

The group elements are all of the form rk, srk with k mod n, and so there are 2n group
elements.

Suppose that n is even. Then there exist four isomorphism classes of one-dimensional
representations

rk srk

ψ1 1 1
ψ2 1 −1
ψ3 (−1)k (−1)k

ψ4 (−1)k (−1)k+1

where k is taken modulo n. To find two-dimensional representations we choose a primitive
nth root of unity w := exp(2πi/n) and set for h ∈ Z:

ρ(h)(rk) =

(
whk 0
0 w−hk

)
ρ(h)(srk) =

(
0 w−hk

whk 0

)
Clearly it suffices to consider h modulo n. Further, by exchanging the basis vectors e1 and
e2 of the standard basis we get the isomorphism ρ(h) ∼= ρ(n−h). The representations ρ(0)

and ρ(n/2) are decomposable because all matrices have the common eigenvectors e1 ± e2.
Thus we have the following decomposition into one-dimensional representations:

ρ(0) ∼= ψ1 ⊕ ψ2 ρ(n/2) ∼= ψ3 ⊕ ψ4 .

For 0 < h < n/2 the representations ρ(h) are irreducible, because the matrix ρ(h)(r) is
diagonalizable with distinct eigenvalues but not simultaneously with ρ(h)(s). We thus get
the additional characters

χh(r
k) = 2 cos

2πkh

n
χh(sr

k) = 0 for h = 1, . . . , n/2− 1 .
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One can check that these characters are all orthogonal in the sense of Theorem 4.6.11,
which implies that the representations are pairwise non-isomorphic. By computing the
square sum of dimensions

|Dn| = 2n = 4 · 12 + (n/2− 1) · 22 ,

we deduce that we have found all n/2 + 3 isomorphism classes of irreducible representa-
tions. Also the number of conjugacy classes

{e}, {rn/2}, {rk, r−k} k = 1, . . . ,
n

2
− 1

together with the two conjugacy classes of reflections in lines through edge bisectors resp.
through corners {sri} with i even resp. odd coincides with the number of isomorphism
classes.

For odd n one finds only two one-dimensional representations and the character table

rk srk

ψ1 1 1
ψ2 1 −1
χh 2 cos 2πkh

n
0 with 0 < h < n

2

In the case of odd n there exists only one conjugacy class of reflections.

4. The alternating group A4 can be identified with the rotational symmetries of a regular
tetrahedron, whose corners we number by 1, 2, 3, 4. The 12 elements consist of

• the neutral element,

• three double transpositions

x := (12)(34) y := (13)(24) z := (14)(23) ,

which generate a normal subgroup H ⊂ A4 isomorphic to the Klein four-group
Z/2Z × Z/2Z. Geometrically they correspond to rotations of the tetrahedron by π
in an axis through the centres of opposite edges.

• There also exist 8 cyclic permutations of order 3, which geometrically correspond
to rotations by 2π

3
in an axis through one of the four vertices and the centre of the

opposite face.

If we choose the rotation t := (123)4, then we find four conjugacy classes:

{1} {x, y, z} {t, tx, ty, tz} {t2, t2x, t2y, t2z} .
Let K := {e, t, t2} ∼= Z/3Z be a cyclic subgroup of A4, then we find a short exact sequence
of groups

1→ H → A4 → K → 1 ,

in which the surjection onto K has kernel {1, x, y, z}.
The characters of three one-dimensional irreducible representations can be found by
pulling back the three irreducible characters of the cyclic group K. The fourth character
we find via the orthogonality relations:

1 3 4 4
1 x t t2

χ0 1 1 1 1
χ1 1 1 w w2

χ2 1 1 w2 w
ψ 3 −1 0 0
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where w is a primitive third root of unity. It is straightforward to check the remaining
orthogonality relations.

Finally we describe the irreducible three-dimensional representation: A4 acts as subgroup
of S4 on C4 = C(e1, e2, e3, e4) by permuting the elements of the standard basis. The
orthogonal complement of the trivial subrepresentation C(e1 + e2 + e3 + e4) is the sought-
after three-dimensional irreducible representation.

Definition 4.6.17

1. The Quaternions are the real 4-dimensional associative unital algebra H with basis 1, i, j, k,
for which the multiplication is determined on the basis elements by the relations

i2 = j2 = k2 = −1

ij = k .

2. An H-module we will also call an H-vector space or a quaternionic vector space.

The algebra H of quaternions is a skew field, or also called division algebra, because every
a0 + a1i + a2j + a3k ∈ H \ {0} has an inverse, 1∑

i a
2
i
(a0 − a1i − a2j − a3k). A classical result of

Frobenius says that there are only three finite-dimensional real division algebras: the fields R
and C of real and complex numbers, as well as the quaternions.

The nomenclature “quaternionic vector space” is justified by the following theorem, which
implies that all H-modules are isomorphic to direct sums of a single irreducible H-module.

Theorem 4.6.18 Let D be a division ring and V a finitely generated D-module. Then the
ring EndD(V ) is semisimple and all simple EndD(V )-modules are isomorphic.

Proof. As in linear algebra one shows that V has a finite D-basis. Choose a D-basis (e1, . . . en)
of V and consider

R := EndD(V ) → V ⊕ . . .⊕ V
f 7→ (f(e1), . . . , f(en)) ,

which is a homomorphism of R-modules. Since a D-linear map can be uniquely determined
by specifying values on a basis, the morphism is injective and surjective, thus an isomorphism
of R-modules. Now since V is simple as EndD(V )-module, and thus also semisimple, the ring
EndD(V ) is semisimple. By Theorem 4.3.10 every simple EndD(V )-module is isomorphic to a
submodule of EndD(V ), i.e. isomorphic to V . Every EndD(V )-module is thus a direct sum of
simple EndD(V )-modules, namely of copies of V .

The following lemma establishes a connection to complex vector spaces:

Lemma 4.6.19 An H-module is equivalent to a complex vector space V with an antilinear
map J that satisfies J2 = −idV .

Proof. Let V be a H-module. We defined the action of the imaginary unit of C by acting with
i ∈ H. This endows V with the structure of a complex vector space. Now set J(v) = jv. The
properties of J are easily checked.

Conversely, given a complex vector space V with an antilinear map J , then one defines the
action of the quaternion i by the action of i ∈ C and the action of j by the action J . The action
of k = ij is then determined.

Theorem 4.6.20 Let G be a group and V a simple finite-dimensional representation of G
over C. Then exactly one of the following three cases applies:
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(a) V is obtained from a simple real representation VR by extension of scalars, i.e.

V = C⊗R VR = IndC
R(VR) .

In this case we say that V is of real type.

(b) V is obtained from a simple quaternionic representation VH on an H-module by restriction
of scalars onto C ⊂ H, i.e.

V = ResHC VH .

In this case we say that V is of quaternionic type.

(c) V is not isomorphic to V . In this case we say that V is of complex type.

Proof. • If the representations V and V are not isomorphic, then by Schur’s lemma 1.5.5
there are no nonzero G-intertwiners between them. If, on the other hand V ∼= V , then

dimC HomG(V, V ) = 1 .

For a nonzero homomorphism J ∈ HomG(V, V ) we have

Jav = aJv for all a ∈ C, v ∈ V

i.e. J is antilinear. By applying the underlying R-linear map twice, then we obtain a
C-linear map, to which we can apply Schur’s lemma. Thus

J2 = λidV with λ ∈ C× ,

λJv = J3v = J(J2v) = Jλv = λJv ,

which implies λ = λ, and so λ ∈ R. If we replace J by a complex multiple J ′, i.e. J ′ = zJ
with z ∈ C×, then

(J ′)2 = zJzJ = |z|2J2 = |z|2λ idV .

In the case V ∼= V we can thus find an antilinear G-isomorphism J with either (a)
J2 = idV or (b) J2 = −idV .

• In case (a) we consider the real vector subspace of J-fixed points V J ⊂ V . The endomor-
phisms ρg commute with J and so V J is a real G-representation:

Jρgv = ρgJv = ρgv

and so we get for every g ∈ G that ρgv ∈ V J . The map

V J ⊗R C → V
v ⊗R (λ1 + iλ2) 7→ λ1v + λ2iv

with λ1, λ2 ∈ R is then an isomorphism of complex G-representations. (On the left-hand
side G acts non-trivially only on V J , but trivially on C.) In case (b) the map J provides
V with the structure of an H-vector space by Lemma 4.6.19.

One can read off the type from the character table, cf. [S77, Proposition 39]: the expression
1
|G|
∑

g∈G χ(g2) takes the value 1 for real, −1 for quaternionic and 0 for complex representations.
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5 Artinian and Noetherian modules

5.1 Noetherian modules

Let R be a unital ring.

Theorem 5.1.1 For a (left) R-module M the following are equivalent.

1. Every ascending chain N1 ⊆ N2 ⊆ · · · ⊆ Nk ⊆ Nk+1 ⊆ · · · of submodules of M becomes
stationary, i.e. there exists an index k, such that Ni = Nk for all i ≥ k. We also say that
M satisfies the ascending chain condition.

2. Every non-empty subset of submodules of M has a maximal element with respect to
inclusion.

3. Every submodule of M is finitely generated.

Definition 5.1.2

• A left R-module M , that satisfies one (and thus all) conditions from Theorem 5.1.1 is
called a Noetherian module.

• A ring R is called (left-)Noetherian, if it is Noetherian as left module over itself.

• Analogously one defines Noetherian right modules and right-Noetherian rings.

• A ring is called Noetherian, if it is both left- and right-Noetherian.

A left Noetherian ring is not automatically right-Noetherian. A counterexample will be
discussed in the exercises.

Proof of Theorem 5.1.1.

(1) ⇒ (2) Every non-empty set X of submodules satisfies the requirements of Zorn’s lemma: let
N1 ⊆ N2 ⊆ . . . be a chain in X, then

⋃
i

Ni = Nk ∈ X is by (1) an upper bound for the

family {Ni}. The existence of a maximal element thus follows from Zorn’s lemma.

(2) ⇒ (3) Let N ⊆M be a submodule. We consider the set

X := {N ′|N ′ ⊆ N N ′finitely generated submodule ofM, }

This set is non-empty because the it contains the zero module, 0 ∈ X. Let N0 ∈ X be
a maximal element. We claim that N0 = N . Otherwise, for x ∈ N\N0, we would have
〈N0, x〉 ∈ X and 〈N0, x〉 ) N0, in contradiction to maximality of N0.

(3) ⇒ (1) Let N1 ⊆ N2 ⊆ · · · be a chain of submodules. The union N ′ :=
⋃
i

Ni is a submodule

and finitely generated by (3), say N ′ = 〈x1, . . . , xr〉. Now there exists a k ∈ N such that
xi ∈ Nk for all i = 1, . . . , r. Thus N ′ ⊆ Nk and so the chain of submodules becomes
stationary.

Examples 5.1.3

1. If R is an algebra over a field K, then every R-module that is finite-dimensional over K
is also Noetherian. If R is a finite-dimensional algebra over a field, then R is Noetherian.

2. Semisimple rings are Noetherian by Theorem 4.3.10
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3. The submodules of a ring are its ideals. In the case of PIDs, these are generated by a
single element, in particular they are all finitely generated. By Theorem 5.1.1 PIDs are
thus Noetherian.

4. We give an example of a ring, that is not Noetherian:

R = {f(X) ∈ Q[X] | f(0) ∈ Z}
= {m+Xg | m ∈ Z, g ∈ Q[X]}

Every subgroup G of (Q,+) defines an ideal

AG := GX +X2Q[X]

of R. Consider for every i ∈ N the subgroup Gi := {m
i
mm ∈ Z}. Here we get an infinite

ascending chain of ideals
AG2 ⊂ AG4 ⊂ AG8 ⊂ . . . .

in R that does not become stationary. More examples of Noetherian rings will result from
Corollary 5.1.7 below.

Theorem 5.1.4

1. Submodules and homomorphic images of Noetherian modules are Noetherian.

2. If U is a submodule such that U and M/U are Noetherian, then so is M .

Proof. 1. Let M be Noetherian and U a submodule of M . Every submodule U ′ of U is also
a submodule of M , thus finitely generated. Thus the submodule U is also Noetherian by
Theorem 5.1.1.

Let M ′ be a homomorphic image of M , i.e. f : M � M ′, so that M ′ ∼= M/ ker f . Let V
be a submodule of M ′ and f−1(V ) its preimage under the surjection f . Then f−1(V ) is
a submodule of the Noetherian module M and thus finitely generated, say:

f−1(V ) = 〈v1, . . . , vr〉 with vi ∈M .

This implies
V = 〈v1 + ker f, . . . , vr + ker f〉 ,

and so V is also finitely generated. Thus the homomorphic image M ′ is Noetherian.

2. Let N1 ⊆ N2 ⊆ · · · be an ascending chain of submodules in M . Via the canonical
surjection p : M �M/U we obtain an ascending chain of submodules in M/U

(N1 + U)/U ⊆ (N2 + U)/U ⊆ · · ·

and by intersecting with U an ascending chain of submodules in U :

N1 ∩ U ⊆ N2 ∩ U ⊆ · · ·

As both U and M/U were assumed to be Noetherian, there exists a k ∈ N, such that

Nk + U = Nk+1 + U = · · · and Nk ∩ U = Nk+1 ∩ U = . . . .

This implies Nk = Nk+1, because the stationary chain in the quotient implies that x ∈
Nk+1 can be written as x = y + u with y ∈ Nk and u ∈ U . Thus u = x− y ∈ U ∩Nk+1 =
U ∩Nk ⊂ Nk, which implies x ∈ Nk.
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Corollary 5.1.5 Finite direct sums of Noetherian modules are Noetherian.

Proof. Let U, V be Noetherian modules. Then also (U ⊕ V )/V ∼= U is Noetherian. Now Theo-
rem 5.1.4(2) implies that the direct sum U ⊕ V is Noetherian.

Theorem 5.1.6 A module over a Noetherian ring is Noetherian if and only if it is finitely
generated.

Proof. Every Noetherian module is finitely generated (since it is a submodule of itself). Con-
versely, let M = 〈a1, . . . , ar〉 and let F := Rr. Consider the surjection

F = Rr � M

(α1, α2, . . . , αr) 7→
r∑
i=1

αiai

By Corollary 5.1.5 the direct sum Rr is Noetherian and by Theorem 5.1.4 (1) so is its homo-
morphic image M .

Corollary 5.1.7
1. Finitely generated modules over PIDs are Noetherian.

2. The finitely generated abelian groups are the Noetherian Z-modules.

3. Every subgroup of a finitely generated abelian group is finitely generated.

Proof. 1. Theorem 5.1.6 immediately implies that finitely generated modules over PIDs are
Noetherian.

2. Since Z is a PID, this is a special case of (1).

3. Follows from Theorem 5.1.1, as a subgroup of an abelian group is also a Z-submodule.

Theorem 5.1.8 [Hilbert’s basis theorem] Let R be a commutative ring. If R is Noetherian,
then so is the polynomial ring R[X].

Proof. Let I ⊂ R[X] be an ideal. Let ai ⊂ R be the ideal generated by the leading coefficients
of all polynomials of degree i in the ideal I. The multiplication with the monomial X shows
the following inclusion of ideals of R:

a0 ⊆ a1 ⊆ a2 ⊆ . . . ai ⊆ ai+1 ⊆ . . . .

For this ascending chain of ideals in the Noetherian ring R there exists a j, such that

aj = aj+1 = . . . .

Each of the finitely many ideals ai with i ≤ j is finitely generated since R is Noetherian, see
Theorem 5.1.6. Now we can choose finitely many polynomials from I, whose leading coefficients
generated all ideals ai of R.

We claim that these finitely many polynomials generate the ideal I in the polynomial ring:
let p ∈ I of degree n, then we find αi ∈ R with associated polynomial pi, such that p and the
polynomial

∑
i αiX

nipi have the same leading coefficient. The difference p −
∑

i αiX
nipi has

degree less or equal than n − 1. One now proceeds by induction to find that p is contained in
the ideal generated by the polynomials pi.
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5.2 Artinian modules

Artinian modules behave similarly to Noetherian modules. We keep their discussion brief.

Definition 5.2.1

1. An R-module is called Artinian, if for every descending chain M0 ⊃ M1 ⊃ M2 · · · of
submodules in M there exists an index n, such that Mi = Mn for all i ≥ n. We say that
M satisfies the descending chain condition.

2. A ring is called left-Artinian, if it is Artinian as a left module over itself.

3. Analogously one defines Artinian right modules and right-Artinian rings.

4. A ring is called Artinian, if it is both left- and right-Artinian.

Examples 5.2.2

1. If R is an algebra over a field K, then every R-module that is finite-dimensional over K,
is also Artinian. If R is a finite-dimensional algebra over a field, then R is Artinian.

2. The ring Z is not Artinian, as shown by the chain Z ⊃ 2Z ⊃ 4Z ⊃ · · · . For every positive
n ∈ Z is the ring Z/nZ is finite and thus Artinian. (Note that the ring Z is Noetherian,
as it is a PID.)

One can show:

Theorem 5.2.3

1. Let M be an R-module and N a submodule of M . Then M is Artinian if and only if
M/N and N are Artinian.

2. Let M1,M2, . . . ,Mr be modules over R. Then the direct sum ⊕ri=1Mi is Artinian if and
only if all summands Mi are Artinian.

3. Every finitely generated module over a left-Artinian ring is Artinian.

Remark 5.2.4

• Note that an R-module is finitely generated if and only if for every family (Mi)i∈I of
submodules with

∑
i∈IMi = M there exists a finite subset J ⊂ I, such that M =∑

j∈JMj. If M is finitely generated, M = 〈x1, . . . xr〉, then we find submodules Mi with
xi ∈Mi and so M =

∑r
i=1 Mi. For the converse we use that M =

∑
m∈M Rm and we can

find a finite subset of M that generates M .

• Dually one now defines: An R-module M is called finitely cogenerated, if for every family
(Mi)i∈I of submodules with ∩i∈IMi = 0 there exists a finite subset J ⊂ I with ∩j∈JMj = 0.

• If N is a submodule of an R-module M , then the definition implies that the quotient
module M/N is finitely cogenerated if and only for every family (Mi)i∈I of submodules
of M with ∩i∈IMi = N there exists a finite subset J ⊂ I with ∩j∈JMj = N .

Theorem 5.2.5 Let M be an R-module. Then the following statements are equivalent:

1. M is Artinian.

2. Every non-empty set of submodules of M contains a minimal element with respect to
inclusion.
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3. Every quotient module of M is finitely cogenerated.

Proof.

(1)⇒ (2) is proved analogously to the corresponding statement (1) ⇒ (2) in Theorem 5.1.1 for
Noetherian modules.

(2)⇒ (3) Let N and (Mi)i∈I be submodules of M with N = ∩i∈IMi. Set X = {∩j∈JMj|J ⊂
I finite}. By assumption X contains a minimal element N1. Then we have N1 ⊃ N . If
this were a proper inclusion, then we could find an x ∈ N1 \ N . By N = ∩i∈IMi there
would exists an i ∈ I with x 6∈Mi, and so x 6∈ N2 = N1 ∩Mi. We thus have N2 ∈ X and
N2 ( N1: a contradiction!

(3)⇒ (1) For a descending chain M0 ⊃ M1 ⊃ M2 ⊃ · · · of submodules of M we set N := ∩i∈NMi.
As M/N is finitely cogenerated, there exists a finite subset J ⊂ N with N = ∩j∈JMj.
Setting n := max(J), then we get N = Mn, and so Mi = Mn for all i ≥ n.

We finally state without proof the following theorem of Hopkins: A left-Artinian ring is also
left-Noetherian. (The converse is false, with the ring Z providing a counterexample.)

Definition 5.2.6
A ring R is called a simple, if it has no non-trivial two-sided ideals, i.e. no ideals except 0 and
R itself.

Warning: a ring that is simple as a module over itself, is a simple ring. The submodules are
exactly the left ideals, and the module has no non-trivial submodules. Thus there are no non-
trivial left ideals, hence also no non-trivial two-sided ideals. The converse is false: there exist
simple rings that are not simple as modules over themselves. For example, the ring M(n×n,K)
of n × n matrics over a field K is simple, but not simple as a module over itself: it is a direct
sum of n simple modules of dimension n.

Theorem 5.2.7 For a ring R the following are equivalent

1. R is a simple Artinian ring.

2. R is isomorphic to a matrix ring over a division ring.

3. R is semisimple and all simple R-modules are isomorphic.

4. R is semisimple as R-module and in the decomposition of the left module R one only
finds a single isomorphism class of simple modules.

5. R is Artinian and has a faithful simple module.

Proof. We will only prove the implications (5) ⇒ (4) and (1) ⇒ (5). The others are simple
consequences of definitions and the Artin–Wedderburn Theorem 4.4.3.

(5)⇒ (4) Consider for the faithful module M and for all n all R-module homomorphisms

R→Mn .

The kernels of such morphisms are (left-)ideals of R; as R is Artinian, we can choose a
morphism f with minimal kernel.
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We show that this f must be injective. If r ∈ R \ {0} with f(r) = 0, then we could use
the faithful module M to find an m ∈M with r.m 6= 0. But then

R → Mn ⊕M
r 7→ (f(r), r.m)

would have strictly smaller kernel than f , in contradiction the minimality of the kernel
of f . Now we have found R as a submodule of the homogenous (i.e. consisting of a single
non-trivial isotypic component) semisimple module Mn, so it is itself homogenous and
semisimple.

(1)⇒ (5) For every R-module M the annihilator Ann(M) is a two-sided ideal. As R is simple and
1 6∈ Ann(M) for a non-zero R-module M , the annihilator must vanish and thus every
non-zero R-module is faithful.

As R is Artinian, simple modules exist: every descending chain of ideals becomes station-
ary and the smallest appearing ideal is a simple module.

Corollary 5.2.8 Let K be a field and R a K-algebra. Let M be a simple R-module with
dimKM < ∞, for which we have EndR(M) = KidM . (For example, this is always the case if
K is algebraically closed.) Then the structure map

R → EndR(M)
r 7→ ridM

is surjective.

Proof. We factor the structure map

R //

��

EndR(M)

R/Ann(M)

77

Here M is a faithful R/Ann(M)-module, such that the map R/Ann(M)→ EndK(M) is injec-
tive. Thus R/Ann(M) is a finite-dimensional K-algebra and thus Artinian. Hence R/Ann(M)
is an Artinian ring that is simple since M is a simple module. By Theorem 5.2.7.2 we have
R/Ann(M) ∼= EndK(M).

Alternatively, we can use the Jacobson density theorem Theorem 4.5.1. Let f ∈ EndK(M) =
EndEndR(M)(M). Let m1, . . .mn be afinite basis of the K-vector space M . The density Theo-
rem 4.5.1 implies that there is x ∈ R such that x.mi = f(mi) for all i = 1, . . . , n. Since a
K-linear map is uniquely determined on a basis, f is in the image of the map R→ EndK(M).

Here is a consequence:

Corollary 5.2.9 Let K be a field and R a simple, finite-dimensional K-algebra, dimK R = n,
whose centre is K1R. Then we have an isomorphism of rings:

R⊗K Ropp ∼= M(n× n,K) .

Proof. We may consider R as an R−R-bimodule and, equivalently, as R⊗K Ropp-module. The
two-sided ideals are precisely the R⊗K Ropp-submodules, and since R is a simple ring, it is also
simple as R⊗K Ropp-module. Now we have

EndR⊗KRoppR → Z(R)
f 7→ f(1) ,
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since r.f(1) = f(r · 1) = f(1 · r) = f(1).r for all r ∈ R. We thus have the isomorphism

EndR⊗KRoppR ∼= Z(R) ∼= K .

By the previous corollary we get that

R⊗K Ropp → EndK(R) ∼= M(n× n,K)

is surjective. The image and preimage are K-vector spaces of the same dimension n2, thus the
map is even an isomorphism.
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6 Resolutions and derived functors

In an abelian category, the functor Hom(U,−) is exact if and only if U is a projective object;
similarly Hom(−, U) is exact if and only if U is an injective object. The functor U ⊗− is exact
exactly for the flat objects in an abelian tensor category. We now aim to study these functors
on general objects.

6.1 Projective and injective resolutions

Definition 6.1.1

1. An abelian category C has enough projective objects, if for every object M ∈ C there
exists an epimorphism P →M → 0 from a projective object P .

2. It has enough injective objects, if for every object M there exists a monomorphism 0→
M → I into an injective object I.

Examples 6.1.2

1. For every ring R, the category R−Mod has enough projective and injective objects. This
is a consequence of the fact that every module is a submodule of a cofree module and the
image of a free module, cf. Theorem 3.3.4.

2. The category Abfin of finite abelian groups has no projective or injective objects what-
soever, in particular not enough.

Here we have to be careful: Abfin is a full subcategory of Ab, but in general the projective
or injective objects of a subcategory are not simply the projective or injective objects,
the happen to lie in the subcategory. For example, every vector space over the field Z/2Z
is an abelian group and every linear map is a group homomorphism. Thus vectZ/2Z ⊂ Ab
is a subcategory. Every vector space is free and thus projective. In particular, Z/2Z is
projective in vectZ/2Z, but not in Ab.

To see this we argue that for every n ∈ N the short exact sequence

0→ Z/nZ→ Z/n2Z→ Z/nZ→ 0

does not split. Thus the cyclic group Z/nZ is neither projective nor injective. According to
Corollary 4.2.4, every finite abelian group A can be written as A =

⊕
Z/niZ ≡

∏
Z/niZ.

As a sum (product) of non-projective (non-injective) modules it is non-projective (non-
injective) in the category the finite abelian groups by Lemma 3.3.1.

3. The category of finitely generated abelian groups has enough projective objects (the free
abelian group on a finite generating set is projective and maps surjectively onto such
a group), but no injective objects. According to Corollary 4.2.4 any finitely generated
abelian group A can be written as a finite product

∏
Z/niZ× Zn. By Lemma 3.3.1 it is

injective in Ab, if every factor if injective. By Corollary 1.4.16 the injective abelian groups
are exactly the divisible abelian groups; but the factors Z and Z/niZ are not divisible.
(Note that the coregular module is not finitely generated.)

Definition 6.1.3 Let M be an object in an abelian category C.

1. A projective resolution of M is an exact sequence

· · · → Pi → Pi−1 → · · · → P1 → P0 →M → 0

in which all objects (except M) are projective. The surjective morphism P0 → M is
known as the augmentation.
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2. An injective resolution is an exact sequence

0→M → Q0 → Q1 → · · · ,

in which all objects Qi are injective.

Free resolutions are special cases of projective resolutions. We have already seen in Obser-
vation 4.1.3 that modules over PIDs admit free resolutions of length 1:

0→ F1 → F0 →M → 0 .

Lemma 6.1.4 If a category C has enough projectives, then every object of C has a projective
resolution. If C has enough injectives, then every object has an injective resolution.

Proof. We only prove the statement for projective resolutions; the statement for injective reso-
lutions is the corresponding statement in Copp. First we note that there exists an epimorphism
P0 → M → 0, as C has enough projectives. Let K0 := ker(P0 → M). The object K0 is in
general not projective, but we can find an epimorphism P1 → K0 from a projective object P1.
The resulting sequence

P1
//

  

P0
//M // 0

K0

>>

!!
0

==

0

is exact. Iterating this procedure, one obtains a projective resolution.

Remark 6.1.5 To motivate the appearance of resolutions, we start by discussing systems
of linear equations. In contrast to linear algebra, the coefficients of the equations will now be
elements of a K-algebra A, where K is a commutative ring. Thus let B ∈M(q× p,A) a matrix
with entries in A.

The solutions we are interested in are p-tuples (uj)j=1,...p of elements in an arbitrary left
A-module S. Indeed, in

(∗)
p∑
j=1

Bijuj = vi with i = 1, . . . , q .

Here Bijuj is the left action of the element Bij ∈ A on the element uj in the A-module S. The
inhomogeneity (vj)j=1,...q is an element in the A-module Sq.

Such a situation is realized in the following examples.

• Let K to be a field and A = K[X1, . . . , Xs] the polynomial ring over K in several indeter-
minates. We endow S = Kn with the structure of an A-module as follows: any choice of
s-tuples (q1, . . . , qs) ∈ Ks gives an evaluation morphism ev(q1,...,qs) : A = K[X1, . . . , Xs]→
K. Pulling back the K-module structure on S = Kn along this evaluation, we obtain an
A-module structure on Kn. The homogeneous linear system (∗) is then a system of linear
equations depending polynomially on s parameters in K.

• In another example we take K = R and A the algebra of real-valued smooth functions on
a smooth manifold X. If X is compact, thenby the Serre-Swann theorem finitely generated
projective A-modules are exactly the spaces of smooth sections in vector bundles over X.
Let B be a linear differential operator (for example the Laplace operator if the manifold
X has a metric). Then we are looking for solutions of inhomogeneous system of linear
differential equations Bu = v.
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We now describe the situation in terms of resolutions. To encode the matrix B, we observe
that its action by right multiplication gives a morphism of free left A-modules

F1 = Aq
·B→ F0 = Ap .

We form the quotient module M := F0/ImB which comes with a canonical surjection ψ : Ap →
M . We obtain an exact sequence

F1 = Aq
B→ F0 = Ap

ψ→M → 0 .

1. We are in a first step interested in solutions of the homogeneous system associated to
(∗) with values in an arbitrary A-module S. Apply the contravariant left-exact functor
HomA(−, S) to this exact sequence to get the new exact sequence

0→ HomA(M,S)→ Sp
B·→ Sq ,

where B now acts by left multiplication. We see that for any A-module S, the K-module
HomA(M,S) is isomorphic to the kernel of B. and thus equal to the space of solutions of
the homogeneous systems of equations to (∗) with values in the module S.

The quotient module M = Ap/AqB can thus be considered as a “coordinate-free” version
of the homogeneous linear system to (∗): the homomorphisms from the quotient moduleM
into a module S is the space of solutions of the homogeneous system for the module S. Note
that after choosing the standard basis (ei)i=1,...p of Ap and setting ui := ψ(ei) ∈ M , the
module M has generators (ui)i=1,...p which obey the relations

∑p
j=1Bijuj for i = 1, . . . , q.

2. We now assume that A is left-Noetherian. For example, this is the case for the polynomial
ring A = K[X1, . . . , Xs] over a field K. As a submodule of a finitely generated module,
kerB is then finitely generated. This allows us to find a finitely generated free module
F2 = Ar and a surjection F2 → kerB. We extend the exact sequence above to find

(∗∗) F2
X→ F1 = Aq

B→ F0 = Ap →M → 0

an exact sequence finitely generated free modules. Iterating, we find a free and thus, in
particular, projective resolution of M .

Again, we apply the left-exact contravariant functoir HomA(−, S) to obtain a chain com-
plex

0→ HomA(M,S)→ Sp
B·→ Sq

X·→ Sr

of K-modules. A necessary condition for the inhomogeneous linear system (∗) with inho-
mogeity (uj)j=1,...q to have solution is that v is in the image of B. Exactness implies that
this is equivalent to Xv = 0. We have thus characterized the inhomogenuous terms for
which solutions exist by a linear condition.

3. It remains to describe the solutions of the homogeneous system using the complex (∗∗).
The images of r generators of F2 are generators for the space of solutions of the ho-
mogeneous system Bu = 0 in F0. Over rings, in contrast to fields, this is typically an
over-parametrization: in general, the free resolution continues:

· · ·F3 → F2 = Rr X→ F1 = Rq B→ F0 = Rp → Rp/BRq → 0 .

The elements of the module F3 describe dependencies between parametrizations; they
are called syzygies. One can show that for the ring K[X1, . . . , Xs] the free resolution can
be chosen to terminate after s steps. For a PID such as K[X] we already know from
Observation 4.1.3, that free resolutions of length 1 exist.
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6.2 Homology and homotopy

We denote by ChC the category of chain complexes in an abelian category C. Chain complexes
were introduced in Definition 1.4.1. The morphisms in ChC are the “ladders” of morphisms in
C, i.e. commutative diagrams

· · · dn+1 // Cn+1

fn+1

��

dn // Cn
dn−1 //

fn
��

· · ·

· · · dn+1 // Dn+1
dn // Dn

dn−1 // · · ·

that are called chain maps.

Remarks 6.2.1

1. There exist interesting (full) subcategories: e.g. the chain complexes supported in non-
negative or non-positive degrees, or the bounded chain complexes, for which only finitely
many objects Ci are nonzero in the abelian category C. For simplicity we will denote all
differentials in a chain complex by the symbol d in what follows.

2. In an exercise we will see that the category ChC is abelian.

Definition 6.2.2

1. Let (C•, d•) ∈ ChC. The i-cycles are defined as Zi(C•, d•) := ker(di−1) ⊂ Ci.

2. The i-boundaries Bi(C•, d•) are defined as the image of di in Ci.

3. The image Bi is a subobject of the chains Ci. By the chain complex condition d2 = 0, the

composite of inclusion Bi
ι→ Ci and the differential Ci

d→ Ci−1 vanishes. The inclusion
hence factors over the kernel Zi of d

Bi
ι //

  

Ci
d // Ci−1

Zi

ker d

OO

with a monomorphism. The boundaries are thus a subobject of the cycles. The ith
homology of the complex C• is defined as the cokernel of this monomorphism.

By realizing the abelian category explicitly as full subcategory of a category of modules
over a ring, then we can compute with elements. The cycles in Zi are exactly the elements

Zi := {ci ∈ Ci | di−1ci = 0}

and the boundaries

Bi := {ci ∈ Ci | ∃ bi+1 ∈ Ci+1 such that dibi+1 = ci } .

Then boundaries are, in particular, cycles because ci = dibi+1 implies di−1ci = di−1 ◦
dibi+1 = 0. The homology is then the quotient

Hi(C•, d•) := Zi/Bi = ker(di−1)/Im (di) .

4. A chain complex C• is called acyclic , if Hn(C•) = 0 holds for all n ≥ 1. (This terminology
is typically used in cases when Cn = 0 for n < 0. It then says that the complex has trivial
homology, except possibly in degree zero.)
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Remarks 6.2.3

1. For every n ∈ Z the assignment Hn : ChC → C is a functor, because every morphism of
chain complexes maps kernels of d auf kernels of d and images of d to images of d. For a
chain map f , one typically also writes fn instead of Hn(f) for the induced map.

2. Let P• → M → 0 be a projective resolution of an object M ∈ C. Then the complex
P• → 0 is acyclic. It zeroth homology is P0/(Im (P1 → P0) = P0/ ker(P0 → M) ∼= M ,
since P0 →M is surjective.

3. Let C• be a chain complex, concentrated in non-negative degrees, i.e. one that ends with
. . . → C1 → C0 → 0. Then we have H0(C•) = C0/Im (C1 → C0) and the canonical
surjection provides a surjective morphism C0 → H0(C•). Then one can form the so-called
augmented complex

· · · → Cn → Cn−1 → · · · → C0 → H0(C•)→ 0

which is exact if and only if C• is acyclic.

4. The notions of cycles and boundaries come from topology. There the differential d• can
often be interpreted as taking the geometric boundary of an object, e.g. of a manifold,
and a cycles is an object without boundary.

5. Consider a ring R and an element x ∈ R. Then right multiplication by x defines the
differential in a chain complex

0→ R
·x→ R→ 0.

Here we have H0(C•) = R/R.x and H1(C•) = {r ∈ R|r.x = 0} = Ann(x).

6. For a slightly more complicated example we consider two elements a, b ∈ R of a commu-
tative ring R and the complex

0 // R X // R2 A // R // 0

with matrices

A = (a, b) and X =

(
−b
a

)
Here we have H0(C•) = R/(ax+ by) a measure to what extent the inhomogeneous linear
equation ax + by = c is solvable. The homology H1(C•) = {(r1, r2) ∈ R2|r1a + r2b =
0}/ {(−λb, λa)} is the space of solutions of the homogeneous linear equation modulo the
trivial solutions.

7. In some contexts it is usual to reverse the grading of chain complexes, i.e. with the
differential mapping from Ci to Ci+1, and to call the resulting homology cohomology
instead. For simplicity we do not reverse differentials and instead define the cohomology
as H i(C•, d•) := H−i(C•, d•) and also Ci = C−i.

8. Note that a complex is exact if and only if its homology vanishes. The homology measures
the failure of exactness.
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9. It is possible that a map between two chain complexes is not an isomorphism, but that
it induces an isomorphism upon passing to homology. Here is an example for C = Ab:

· · · // 0

��

// Z

��

2 // Z

��

// 0

��

// · · ·

· · · // 0 // 0 // Z/2Z // 0 // · · ·

Degree 2 1 0 −1

In both cases is H0 = Z/2Z, and all other homology groups vanish. A morphism of chain
complexes f• : C• → D•, that induces an isomorphism Hn(f) : Hn(C•)

∼→ Hn(D•) in every
degree n ∈ Z, is called a quasi-isomorphism of complexes.

A subclass of quasi-isomorphisms is given by the chain homotopy equivalences.

Definition 6.2.4

1. Let f, g : C• → D• be two chain maps. A sequence of maps hn : Cn−1 → Dn with the
property

f − g = h ◦ d+ d ◦ h
is called (chain-)homotopy from g to f . Graphically:

· · · // Cn+1
//

~~
��

Cn

||

//

��

Cn−1

||

//

��

Cn−2
//

{{ ��

· · ·

· · · // Dn+1
// Dn

// Dn−1
// Dn−2

// · · ·

where the vertical arrows are (f − g)n and the diagonal arrows are hn. Note that this
should not be read as a commutative diagram. If there exists a chain homotopy between
f and g, then the two maps are called (chain) homotopic and we write f ' g.

2. If f : C• → D• and g : D• → C• are chain maps with the property f ◦ g ' idD• and
g ◦ f ' idC• , then we say the complexes C• and D• are (chain) homotopy equivalent and
write C• ' D•. This defines an equivalence relation on chain complexes.

Remarks 6.2.5

1. A chain homotopy is not a chain map, already for degree reasons.

2. The following considerations give a hint why it makes sense to introduce chain homotopies.
We consider only consider chain complexes C• and D• of modules, that are concentrated
in degrees 1 and 0. We associate to the chain complex C• the category C(C•) whose objects
are the elements of C0 and with morphisms Hom(c′, c) := {c1 ∈ C1 | dc1 = c − c′}. The
composition of morphisms is the addition in C1.

Then every chain map f : C• → D• defines a functor

C(f) : C(C•) → C(D•)

This maps the object c0 ∈ C0 to the object f(c0) ∈ D0 and the morphism c′0
c1→ c0 to

f(c′0)
f(c1)→ f(c0). Indeed, we have f(c1) ∈ Hom (f(c0), f(c′0)) since

df(c1) = f(dc1) = f(c0 − c′0) = f(c0)− f(c′0) .
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Let f, g : C• → D• be chain maps. A chain homotopy h : g ; f yields a a natural
transformation C(h) : C(g) ⇒ C(f). The only non-zero component for such short chain
complexes is h0 : C0 → D1. By

f(c0)− g(c0) = h−1(dc0) + dh0(c0) = dh0(c0)

we have h0(c0) ∈ Hom(g(c0), f(c0)). Furthermore, for a morphism c1 ∈ Hom(c′0, c0) the
equation

f(c1)− g(c1) = h0(dc1) + dh1(c1) = h0(dc1) = h0(c0)− h0(c′0)

implies the commutativity of the following diagram in C(D•)

g(c′0)
g(c1) //

h0(c′0)

��

g(c0)

h0(c0)
��

f(c′0)
f(c1)

// f(c0)

Theorem 6.2.6

1. Chain homotopic maps induce the same map in homology.

2. Chain homotopy equivalences induce isomorphisms in homology.

Proof. Clearly the second statement follows immediately from the first one and Defini-
tion 6.2.4.2.

Let h be a chain homotopy. We have to show that ĥ := (h ◦ d+ d ◦ h) induces the zero map
in homology. Restricting ĥn to the cycles, we get: ĥ| ker d = d ◦h. This implies ĥ| ker d ⊆ Im d and

thus ĥ∗ = 0 in homology.

In the Example 6.2.3.9 we have seen a chain map that induces an isomorphism in homology,
i.e. a quasi-isomorphism. However, this chain map is not a chain homotopy equivalence: all
chain maps from the lower complex to the upper complex are zero, so there cannot be an
inverse up to homotopy.

6.3 The fundamental lemma of homological algebra

The following statement is central for the entire subject of homological algebra:

Theorem 6.3.1 Let f : M → N be a morphism in an abelian category, P• → M → 0 a
chain complex of projective objects, and N• → N → 0 an arbitrary exact sequence.

1. Then there exists a extension f• : P• → N• of f to a morphism of chain complexes.

2. Any two such extensions f•, f
′
• are chain homotopic.

Analogous statements hold for injective resolutions.

Proof. • Consider the diagram

P0

��

d //M

f
��

N0
// N // 0
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As P0 is projective, there exists a extension of the morphism f◦d to P0 → N0, such that the
resulting diagram commutes. This extension is typically not unique. Let M ′ ⊂ P0 denote
the kernel of the upper horizontal map, i.e. the kernel of the differential, and N ′ ⊂ N0 the
kernel of the lower map, then we consider the restriction of the map P0 → N0 to M ′. Let
x ∈ ker d = M ′, then we have df0(x) = f1(dx) = f1(0) = 0, thus by restriction to ker d we
obtain a map f ′ : M ′ → N ′. Thus we have a new diagram

P1

��

//M ′

f ′

��
N1

// N ′ // 0

in which the lower row is again exact. Since P1 is projective by assumption, we can proceed
in the same fashion and obtain a morphism P1 → N1. Inductively we find an extension
of f over the entire resolutions.

• For the second part of the statement it is sufficient to show that every lift f• of the zero

map M
0→ N is homotopic to the zero map on the chain complex, i.e. that there exists a

chain homotopy h, such that f = h ◦ d+ d ◦ h. Consider the ladder diagram:

// P0
d //

f0
��

M

0
��

N1 d
// N0 d

// N // 0

Since d ◦ f0 = 0 ◦ d = 0 , the map f0 gives a morphism P0 → ker(N0 → N). By exactness
of the sequence N• the morphism N1 → ker(N0 → N) is surjective. In the diagram

P0

h0

xx ��
N1

// ker(N0 → N) // 0

the projectivity of P0 allows us to find a lift h0 : P0 → N1 over N1 → ker(N0 → N)→ 0,
such that d◦h0 = f0. Similarly as before we can now repeat the argument for the morphism
f1 − h0 ◦ d:

P1

}}

d //

f1
��

P0

f0
��

h0

||
N2 d

// N1 d
// ker d // 0

Note that in the square only the lower triangle commutes! Then we have d◦(f1−h0◦d) =
d ◦ f1− f0 ◦ d = 0. Using this we can lift f1−h0 ◦ d to a map h1 with target N2, such that
d ◦ h1 + h0 ◦ d = f1. Iterating the construction completes the proof.

Corollary 6.3.2 Any two projective (injective) resolutions of an object are chain homotopy
equivalent.

Proof. Let P• and P ′• be two projective resolutions of an object M ∈ C. Then by Theorem 6.3.1.1
we can extend the identity on M to chain maps f : P• → P ′• and f ′ : P ′• → P•. Then f ◦ f ′ is an
extension of the identity idM to an endomorphism of the chain complex P ′•. Another extension
is given by the identity in every degree. By Theorem 6.3.1.2 these two extensions are homotopic.
Thus f, f ′ are mutually inverse chain homotopy equivalences.
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We can now pursue the idea to replace objects of the category C by chain complexes of
“better” objects, i.e. here projective or injective objects. As we have just seen, we can also lift
morphisms, uniquely up to chain homotopy.

Let F be an additive functor, F : C → D. By applying F termwise to a chain complex P• in
ChC, we obtain another chain complex F (P•) thanks to the additivity of F . However, F does
not need to send exact chain complexes to exact chain complex: for an exact complex P• the
chain complex F (P•) is guaranteed to be exact only if F is exact as a functor.

Definition 6.3.3 Let C,D be abelian categories and F : C → D an additive functor.

1. If C has enough projectives, then the left derived functors LnF : C → D of F are defined
on objects by the homology of the complex F (P•):

LnF (X) := Hn(F (P•)) ,

where P• → X is an arbitrary projective resolution of X.

2. If C has enough injectives, then the (right-)derived functors RnF : C → D are defined
analogously on objects by:

RnF (X) := Hn(F (I•)) ,

where X → I• is an injective resolution.

Remarks 6.3.4

• The derived functors vanish for n ≥ 1 if the functor F is exact.

• By Theorem 6.3.1 the derived functors are well-defined up to isomorphism: if P• and
P ′• are two projective resolutions, then by Corollary 6.3.2 there exists a chain homotopy
equivalence P• ' P ′•; whose image under F yields a chain homotopy equivalence F (P•) '
F (P•). Theorem 6.2.6 then implies that the homology groups are isomorphic.

• Theorem 6.3.1 also implies that the derived functors are indeed functors, i.e. also defined
on morphisms. If f : X → Y is a morphism, then one can lift f to a morphism f• : P• → Q•
between the projective resolutions P• and Q•, unique up to homotopy. Thus one obtains a
morphism F (f•) : F (P•)→ F (Q•) of chain complexes, which induces a unique morphism
F (f•)∗ on the homology. More precisely, Definition 6.2.2 implies that the final morphism
does not depend on the choice of the lift f•. The functor axioms are easy to check.

Lemma 6.3.5 Let F be a right exact functor; then we have L0F = F . Let F be left exact;
then we have R0F = F .

Proof. We only show the first part of the statement. If P• → X is a projective resolution, then
the right exactness of F implies that the sequence

F (P1)→ F (P0)→ F (X)→ 0

is exact. By the homomorphism theorem we have

F (X) ∼= F (P0)/(ker(F (P0)→ F (X)) ∼= F (P0)/Im (F (P1)) = H0(F (P•)) .

From now on we will only consider left derived functors only for right exact functors and
right derived functors only for left exact functors.
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6.4 The long exact sequence

We have seen in Lemma 6.3.5 that the derived functors LnF resp. RnF vanish for n ≥ 1 if the
functor F is exact. To make statements in cases when the derived functors no not vanish, we
need the long exact sequence of derived functors. This needs some preparations.

Lemma 6.4.1 [Snake lemma] Consider a commutative diagram of the following form in an
abelian category C with exact rows:

(∗) M ′ ι //

f ′

��

M //

f
��

M ′′

f ′′

��

// 0

0 // N ′ ι // N // N ′′

Then there exists an exact sequence

ker f ′ → ker f → ker f ′′
∂→ cokerf ′ → cokerf → cokerf ′′

with a so-called connecting morphism ∂, that will be described in the proof. The name “Snake
lemma” is motivated by adding the row ker f ′ → ker f → ker f ′′ above and the row cokerf ′ →
cokerf → cokerf ′′ below:

ker f ′

��

// ker f

��

// ker f ′′

��

//

M ′ ι //

f ′

��

M //

f

��

M ′′

f ′′

��

// 0

0 // N ′

��

ι // N

��

// N ′′

��
cokerf ′ // cokerf // cokerf ′′

If M ′ → M is a monomorphism, then so is ker f ′ → ker f . If N → N ′′ is an epimorphism,
then so is cokerf → cokerf ′′.

Proof. By diagram chase, where we may assume by the full embedding theorem that C is a
full abelian subcategory of modules over a ring R. For proofs of this and similar results, which
avoid the diagram chase, we refer to [McL71, pp. 202].

• We first construct the connecting morphism ∂. Let m′′ ∈ ker f ′′. As M →M ′′ is surjective,
there exists a preimage m0 ∈ M , and by exactness at M every other such preimage has
the form m = m0 + ι(m′) for some m′ ∈M ′. Now f(m0) ∈ N maps under N → N ′′ to 0,
because we took m′′ ∈ ker f ′′. Exactness of the lower row at both sites implies that there
exists a unique n′0 ∈ N ′ with n′0 7→ f(m0). If we had picked m ∈M with m := m0 + ι(m′)
where m′ ∈M ′, then by N ′ 3 n′0 + f ′(m′) 7→ f(m) ∈ N the element n′0 + f ′(m′) would be
a preimage of f(m). Thus the class [n′0] =: ∂(m′′) is well-defined up to an image under
f ′, i.e. well-defined in cokerf ′. By construction ∂ is a module homomorphism.

• For the proof of exactness we restrict our attention to two sites, e.g. exactness at ker f
and exactness at ker f ′′. The additional statement about the injectivity of ker f ′ → ker f
is clear. Then the exactness at cokerf ′ and cokerf as well as the statement about the
surjectivity follow by proceeding to the opposite category Copp.
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• Exactness at ker f : Exactness of the upper row implies that the image of ker f ′ → ker f is
in the kernel of ker f → ker f ′′. Conversely, let m ∈ ker f with m 7→ 0 ∈M ′′. By exactness
of the upper row, there exists a preimage m′ ∈M ′, but we still have to show that it is in
the submodule ker f ′ ⊂M ′. From f(m) = 0 we deduce f(ι(m)) = ιf ′(m′) 7→ 0 ∈ N . Since
the lower row is exact, the map ι : N ′ → N is injective; and so we must have f ′(m′) = 0.

• Exactness at ker f ′′: We retain the notation of elements from the first part of the proof,
where the connecting morphism ∂ was constructed. First we show that the composite

ker f → ker f ′′
∂→ cokerf ′ is zero. If m′′ ∈M ′′ is the image of an element m ∈ ker f under

M → M ′′, then f(m) = 0 and by construction of ∂ we have ∂(m′′) = 0. This shows one
inclusion.

Let m′′ ∈ ker ∂∩ker f ′′; we look for a preimage in ker f . By exactness of the upper row we
find a preimage m ∈M , which not necessarily lies in ker f . But f(m) ∈ N has a preimage
n′ in N ′ since f(m) 7→ 0 ∈ N ′′. By assumption we have ∂(m′′) = 0 and so there exists a
preimage m′ ∈ M ′ of n′ under f ′. Let m0 be the image of m′ in M , so m0 = ι(m′). The
difference δ := m−m0 ∈M has the same image as m in M ′′, i.e. the given m′′. Then we
also have

f(δ) = f(m)− f(m0) = f(m)− ιf ′(m′) = f(m)− ιn′ = 0 .

In the last step we have used that n′ is a preimage of f(m) ∈ N . Thus δ is the desired
preimage of m′′ in ker f .

Remark 6.4.2 (Naturality) The construction implies that the connecting morphism ∂ is
natural, i.e., given a morphism of diagrams D1 → D2 of the form (∗) in Lemma 6.4.1, we get a
commutative diagram

ker(f ′′D1
: M ′′

D1
→ N ′′D1

) ∂ //

��

coker(f ′D1
: M ′

D1
→ N ′D1

)

��
ker(f ′′D2

: M ′′
D2
→ N ′′D2

) ∂ // coker(f ′D2
: M ′

D2
→ N ′D2

)

The category of chain complexes ChC of an abelian category is again an abelian category.
Thus it is clear what a short exact sequence

0→M ′
• →M• →M ′′

• → 0

of chain complexes is. In particular, for an exact sequence of chain complexes we have that for
every n the sequence 0→M ′

n →Mn →M ′′
n → 0 is exact.

Theorem 6.4.3 If 0→ M ′
• → M• → M ′′

• → 0 is a short exact sequence of chain complexes
in C, then there exists a long exact sequence in homology:

· · · → Hi(M
′
•)→ Hi(M•)→ Hi(M

′′
• )

∂→ Hi−1(M ′
•)→ · · · .

Proof. We again assume that C is a full subcategory of the category of R-modules over a ring
R. The commuting diagram

0 //M ′
n

d
��

//Mn
//

d

��

M ′′
n

d
��

// 0

0 //M ′
n−1

//Mn−1
//M ′′

n−1
// 0
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together with the Snake Lemma 6.4.1 yields for all n ≥ 1 a long exact sequence

0→ ZnM
′ → ZnM → ZnM

′′ →
M ′

n−1

Bn−1M ′ →
Mn−1

Bn−1M
→

M ′′
n−1

Bn−1M ′′ → 0

since the kernels of the differential d are the cycles and the images are the boundaries. Thus
we have exact rows in the following commuting diagram

M ′
n/BnM

′ //

d
��

Mn/BnM //

d
��

M ′′
n/BnM

′′ //

d
��

0

0 // Zn−1M
′ // Zn−1M // Zn−1M

′′

Here we have ker d = Hn and cokerd = Hn−1. Another application of the Snake Lemma 6.4.1
yields the long exact sequence in homology.

Theorem 6.4.4 [Horseshoe lemma]

1. Let C be an abelian category with enough injectives, D an arbitrary abelian category and
F : C → D a left exact additive functor. Let

0→M ′ ι→M
p→M ′′ → 0

be a short exact sequence in C. Then there exists a long exact sequence in D

0→ R0F (M ′)→ · · · → RiF (M ′)
RiF (ι)→ RiF (M)

RiF (p)→ RiF (M ′′)
∂→ Ri+1F (M ′)→ · · ·

2. If C has enough projectives and if the functor F is right exact, then there exists a long
exact sequence in D

· · · → LiF (M ′)
LiF (ι)→ LiF (M)

LiF (p)→ LiF (M ′′)
∂→ Li−1F (M ′)

ι∗→ · · · → L0F (M ′′)→ 0

The homomorphism ∂ is again called connecting morphism.

Proof. To compute derived functors we need to consider projective resolutions of P ′• →
M ′, P• → M and P ′′• → M ′′. To be able to apply Theorem 6.4.3, these resolutions should
form a short exact sequence 0→ P ′• → P• → P ′′• → 0 of chain complexes, i.e. the diagram

P ′n

��

// Pn //

��

P ′′n

��
...

��

...

��

...

��
P ′0

ε′

��

// P0
//

ε

��

P ′′0

ε′′

��
0 //M ′ ι //M //M ′′ // 0

should commute. Here ε′ and ε′′ are the augmentations of the projective resolutions of M ′ resp.
M ′′. Then the claim follows from Theorem 6.4.3.

To construct such a diagram we choose two projective resolutions P ′• → M ′ and P ′′• → M ′′

and set P0 := P ′0 ⊕ P ′′0 . We consider on the first component ι ◦ ε′ : P ′0 → M . For the second

133



component we note that M → M ′′ is surjective and use the projectivity of P ′′0 to lift ε′′ to a
morphism P ′′0 → M . Together we obtain a morphism ε : P0 = P ′0 ⊕ P ′′0 → M , such that the
diagram

0

��

0

��

0

��
0 // ker(ε′)

��

// ker(ε) //

��

ker(ε′′)

��

// 0

0 // P ′0

ε′

��

// P0
//

ε

��

P ′′0

ε′′

��

// 0

0 //M ′ ι //

��

M //

��

M ′′ //

��

0

0 0 0

commutes. The two lower rows are exact. The Snake Lemma 6.4.1 implies that the upper row
is exact and coker(ε) = 0, and so P0 →M is surjective.

Thus we have filled the first stage. Now we proceed to the situation

�� ��
P ′1

��

P ′′1

��
0 // ker(ε′)

��

// ker(ε) //

��

ker(ε′′)

��

// 0

0 0 0

which is again a horseshoe and proceed inductively.

Remarks 6.4.5

1. The right derived functors of a left exact functor (for n > 1) vanish if and only if the
functor F is exact. The exactness of F follows from the vanishing of R1F resp. L1F , cf.
the exercises.

2. From the naturality of the connecting morphism we can deduce naturality statements:
given

0 //M ′
•

��

//M•

��

//M ′′
•

��

// 0

0 // N ′• // N• // N ′′• // 0

a commutative diagram of exact sequences of chain complexes, then we obtain a morphism
between the associated long exact sequences from Theorem 6.4.3, i.e. a commuting ladder

· · ·Hi(M
′
•) //

��

// Hi(M•)

��

// Hi(M
′′
• ) ∂ //

��

Hi−1(M ′
•) //

��

· · ·

· · ·Hi(N
′
•) //// Hi(N•) // Hi(N

′′
• ) ∂ // Hi−1(N ′•) // · · ·
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If
0 //M ′

��

//M

��

//M ′′

��

// 0

0 // N ′ // N // N ′′ // 0

is a commutative diagram with short exact rows in a category C with enough projectives,
then induced ladder from Theorem 6.4.4 also commutes:

· · · // LiF (M ′)
ι∗ //

��

LiF (M)
p∗ //

��

LiF (M ′′) ∂ //

��

Li−1F (M ′)
ι∗ //

��

· · · // L0F (M ′′)→ 0

· · · // LiF (N ′)
ι∗ // LiF (N)

p∗ // LiF (N ′′) ∂ // Li−1F (N ′)
ι∗ // · · · // L0F (N ′′)→ 0

6.5 Tor and Ext

Arguable the most important derived functors are the derived functors of the tensor product
and the Hom-functor.

Definition 6.5.1 Let R be a ring.

1. Define for each R-right module X a functor FX : R−Mod → Ab by FX(Y ) := X ⊗R Y .
This functor is right exact (cf. Example 3.1.14.3). Its left derived functors are denoted

TorRn (X, Y ) := LnFX(Y ) .

2. Define for each R-module X a functor GX : (R−Mod)opp → Ab by GX(Y ) :=
HomR(Y,X). The functor GX is left exact (cf. Example 3.1.14.5). Its right derived functors
are denoted

ExtnR(Y,X) := RnGX(Y ) .

In the definition of Ext, one uses an injective resolution in (R−Mod)opp, which is the same
as a projective resolution in R−Mod.

The following observations follow immediately from the definitions:

• TorRn (X, Y ) = 0 for all Y and for all n > 0 if and only if the right module X is flat.

• ExtnR(Y,X) = 0 for all Y and for all n > 0 if and only if the module X is injective.

• Tor and Ext are not only functors in the argument Y , but also in X.

Examples 6.5.2

1. Let R = Z and Y = Z/nZ. A free and thus also projective resolution of the Z-module
Y = Z/nZ is given by the augmented complex

0→ Z n·→ Z→ Zn → 0 .

We now compute TorZk (X, Y ) for the Z-module X = Z/mZ. By Z/mZ ⊗Z Z ∼= Z/mZ
tensoring the projective resolution with Z/mZ yields the complex

0→ Z/mZ n·→ Z/mZ→ 0 ,

whose homology TorZk (Z/mZ,Z/nZ) is:

TorZk (Z/mZ,Z/nZ) ∼=
{

Zgcd(m,n); if k = 0, 1
0; otherwise.
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To see this we write n = g · x with g := gcd(m,n) and x ∈ N. The multiplication by x
acts on Z/mZ as isomorphism since x is relatively prime to m. The kernel kern· = ker g·
consists of all multiples of m/g, which form a cyclic group of order g. The cokernel
cokern· = cokerg· is the quotient of Z/mZ modulo all multiples of g, so again a cyclic
group of order g.

By Lemma 6.3.5 Tor for k = 0 must coincide with the original functor: Tor0(X, Y ) =
X ⊗Z Y . Comparing with Examples 1.2.6.3, we find agreement.

The higher (i.e. k ≥ 2) Tor-groups indeed vanish over Z for all Z-modules: as Z is a PID,
by Observation 4.1.3 one can always construct a free resolution that is concentrated in
the degrees 0 and 1.

We also compute TorZk (Z,Z/nZ) as homology of the complex

0→ Z n·→ Z→ 0

and find

TorZ0 (Z,Z/nZ) ∼= Z/nZ ∼= Z⊗Z Z/nZ and TorZ1 (Z,Z/nZ) = 0 .

The functor Tor1(−,Z/nZ) on finitely generated abelian groups vanishes unless the groups
have a torsion part, thus the name.

2. A very similar computation shows that

ExtkZ(Zm,Zn) ∼=
{

ZggT(m,n); if k = 0, 1
0; otherwise.

The notation Ext will be explained in Section 6.7.

3. In the following example there exist infinitely many non-trivial Tor-groups: Let R =
Z[t]/(tn − 1) be the group ring of the cyclic group Z/nZ of order n over the integers.

The ring homomorphism ε : R → Z that sends t 7→ 1 endows Z with the structure of
an R-module with t.m = m, the trivial R-module. We choose X = Y = Z with trivial
module structure. We claim that a projective (and indeed free) resolution is given by the
projective part of the augmented complex

· · · N→ R
1−t→ R

N→ R
1−t→ R

ε→ Z→ 0

where ε is defined as above by evaluating at 1, i.e. ε(t) = 1 and N := 1 + t+ · · ·+ tn−1. A
quick computation shows (1− t)N = 1− tn, so the differential squares to zero. We show
exactness: the class of a polynomial f ∈ Z[t] in the quotient ring R vanishes if and only if
f is a multiple of 1− tn. The ring Z[t] is a unique factorization domain. Thus a multiple
of N if also a multiple of 1− tn if and only if it is also divisible by 1− t. The complex is
thus exact.

By tensoring the projective resolution over R with Z, one obtains R ⊗R Z ∼= Z in all
degrees. The map induced by 1− t is zero, because one evaluates at t = 1. Multiplication
with N induces the multiplication by n ∈ N. Thus we get the complex

· · · n→ Z 0→ Z n→ Z 0→ Z→ 0

and

TorRk (Z,Z) ∼=


Z; if k = 0 (cf. Lemma 6.3.5)
Zn; if k odd
0 if k > 0 even.
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4. It is clear that for a free Z-module A one has Ext1
Z(A,Z) = 0. The converse, whether

Ext1
Z(A,Z) = 0 implies that the Z-module A is free, is a surprisingly subtle question,

whose answer depends on the underlying set theory [HS1970, Second Edition, p. 330
“note to the third corrected printing”].

6.6 Symmetry of Tor and double complexes

It seems natural to define a second variant Tor′ of Tor by using a projective resolution
of the first variable. Similarly, there exists a variant Ext′ of Ext, in which for a fixes the
contravariant variable X and considers the right derived functors of the left exact functor
HomR(X,−) : R−Mod→ Ab.

We show the isomorphism of Tor and Tor′, by showing that Tor is isomorphic to a third
functor T̃or, which is manifestly symmetric in both arguments; analogous statements hold for
Ext. For all of this we need double complexes.

Definition 6.6.1

1. The category of double complexes in an abelian category C has as objects the triples
(Xij, dh, dv) consisting of objects Xij of C for i, j ∈ Z and morphisms dh : Xij → Xi−1,j

and dv : Xij → Xi,j−1 such that

dhdv = −dvdh and dhdh = dvdv = 0 .

The sum i+ j is called the total degree of the object Xij.

2. The morphisms of double complexes are given by families of morphisms fij : Xij → Yij,
that commute with the two differentials dh and dv.

3. Using the coproduct and product one assigns to a double complex two ordinary complexes

|X••|n :=
∐
i+j=n

Xij (TotX••)n :=
∏
i+j=n

Xij

for both of which the differential is given by d = dh + dv. Both complexes are called
total complexes of the double complex.

Remark 6.6.2

1. Note that the indexing of double complexes is not the usual indexing of rows and columns
of matrices!

2. The diagram

Xi,j
dh //

dv
��

Xi−1,j

dv
��

Xi,j−1
dh // Xi−1,j−1

does not commute! The anticommutativity of the differentials, dhdv = −dvdh, ensures
that the total complexes |X| and TotX are again chain complexes: If x ∈ Xij, then for
d = dh + dv we have

d(dx) = d(dhx+ dvx) = dhdhx+ dhdvx+ dvdhx+ dvdvx = 0 .

Definition 6.6.3 Let R be a ring.
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1. Let (P•, d) be an Ropp-chain complex and (Q•, d) an R-chain complex. Define a double
complex (P ⊗R Q)•,• of Z-modules by

(P ⊗R Q)i,j := Pi ⊗R Qj ,

where the maps for p ∈ Pi, q ∈ Qj are given by dh(p ⊗ q) = d(p) ⊗ q and dv(p ⊗ q) =
(−1)ip ⊗ d(q). We call i the degree of p and write |p| = i. If we abstractly define the
degree of d by −1 (since d takes Pn to Pn−1), then the sign convention above is a special
case of the so-called Koszul sign rule:

Whenever an element of degree i commutes past an element of degree j, a sign (−1)ij

appears.

2. We call the total complex |P ⊗RQ| the tensor product of the chain complexes P• and Q•.

3. Let (P•, d) be chain complex of R-modules, then we define a double complex HomR(P,Q)••
of abelian groups by

HomR(P,Q)i,j := HomR(Pi, Qj) .

Here the differentials of the double complex are given by pre- and postcomposing with
the differentials of P• and Q•.

Remark 6.6.4 Tensor products of chain complexes occur in the following problem, for
example: let X and Y be topological spaces. Singular homology determines two chain complexes
C•(X) and C•(Y ). The Eilenberg–Zilber theorem says that the chain complex C•(X × Y )
of the Cartesian product is chain homotopy equivalent to the tensor product chain complex
C•(X)⊗ C•(Y ).

We need another auxiliary result to study total complexes:

Lemma 6.6.5 Let X•• be a double complex in an abelian category C. If for every j ∈ Z we
have that the row complex X•,j is exact, then:

1. the total complex |X| exact, if there exists an N ∈ Z such that Xij = 0 for all rows
j < N ;

2. the total complex TotX is exact, if there exists an N ∈ Z, such that Xij = 0 for all
columns i < N .

Both conditions 1. and 2. automatically satisfied, if X is non-negatively graded in both
indices. Neither condition is necessary; they are merely sufficient to ensure “convergence”.

Proof. • For the proof of 1. we may assume without loss of generality that N = 0, otherwise
we may shift the complex vertically. Likewise, it is enough to show exactness of the total
complex at the site |X|0, for otherwise we can shift any other total degree to zero by left
or right shifts of X.

Then we have
|X|0 = ⊕n∈ZX−n,n = ⊕n≥0X−n,n .

Let x = (xn0 , xn0−1, . . . , x0) ∈ |X|0 be an element, with xn ∈ X−n,n, for which d(x) = 0
holds. By dhxn ∈ X−n−1,n and dvxn ∈ X−n,n−1 this means for the homogeneous compo-
nents

dv(xi) + dh(xi−1) = 0 in X−i,i−1 for 0 ≤ i ≤ n0 + 1 . (∗)
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As xn0+1 = 0 we have for i = n0 + 1

dh(xn0) = 0 .

Since the rows are exact by assumption, dh(xn0) = 0 implies that there exists a yn0 ∈
X−n0+1,n0 with dh(yn0) = xn0 .

We now inductively find elements yn ∈ X−n+1,n, such that

dh(yn0) = xn0

dh(yi) = xi − dv(yi+1) for 0 ≤ i < n0

It is possible to solve the second equation, because for 0 ≤ i < n0 we have

dh(xi − dv(yi+1)) = dh(xi) + dvdh(yi+1)
I.H.
= dhxi + dvxi+1 − dvdv(yi+2)

(∗)
= 0 ,

and by exactness of the rows we can find yi ∈ X−i+1,i with

dhyi = xi − dvyi+1 .

Thus with y = (yn0 , ..., y0) ∈ |X|1 we have found an element with d(y) = x. The total
complex |X| is thus exact.

• For the proof of the statement concerning Tot(X) we also assume N = 0 and consider
(. . . , x−2, x−1, x0) ∈ (TotX)0, which is allowed to have infinitely many non-vanishing
entries xi ∈ X−i,i. We obtain equations dv(xi) + dh(xi−1) = 0 for all i ≤ 0. The boundary
conditions imply again that the 0th equation has the form dhx0 = 0, so that we can find a
y0 ∈ X1,0 with dhy0 = x0 by exactness of the rows. As before one inductively solves such a
sequence equations to find yi ∈ X−i+1,i, which again may have infinitely many non-trivial
entries, which is fine for an element of TotX.

Let P• → X be a projective resolution of Ropp-modules and Q• → Y a projective resolution
of R-modules. To get a complex that is symmetric in both resolutions, we consider the tensor
product of the resolutions and the homology of the associated total complex and set

T̃or
R

n (X, Y ) := Hn(|P ⊗R Q|) .

Theorem 6.6.6 For an R-right module X and an R-left module Y we have

TorRn (X, Y ) = T̃or
R

n (X, Y ) .

As T̃or
R

n (X, Y ) has been constructed via a double complex that is symmetric in both argu-
ments, this shows that we could have also projectively resolved the other tensor factors.

Proof. • Let P• → X and Q• → Y be projective resolutions. We denote by P̃• the aug-
mented complex with P̃n := Pn for n ≥ 0 and P−1 = X. The augmented complex P̃• is
exact and for every i the module Qi is projective and thus flat by Theorem 1.4.10, which
together imply that the double complex P̃ ⊗R Q has exact rows. Thus the total complex
|P̃ ⊗Q| which is concentrated in one quadrant is also exact by Lemma 6.6.5.
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• Clearly
0→ X[−1]→ P̃• → P• → 0

is a short exact sequence of complexes, where X[−1] denotes the complex which has the
module X in degree −1 and 0 everywhere else. Since Qi is projective, tensoring with Q•
yields an exact sequence of double complexes. Since the functor | − |, which sends double
complexes to complexes, is exact, we obtain a short exact sequence of total complexes

0→ |X[−1]⊗Q| → |P̃ ⊗Q| → |P ⊗Q| → 0

Since the middle complex P̃ ⊗RQ is exact as we have seen in the first step of the proof, its
homology vanishes, and the associated long exact sequence (from Theorem 6.4.3) breaks
into small exact pieces

0→ Hn|P ⊗Q| → Hn−1|X[−1]⊗Q| → 0 ,

for n ≥ 0, thus the connecting morphisms are isomorphisms.

• We now interpret the abelian groups that appear as the source and target of this isomor-
phism: by definition of T̃or the first one is

Hn|P ⊗Q| = T̃or
R

n (X, Y ) ;

and for the second we use the definition of Tor

Hn−1|X[−1]⊗Q| = Hn(X ⊗Q) = TorRn (X, Y ) .

Thus we shown the isomorphism of the functors Tor and T̃or.

For a commutative ring R both tensor products X ⊗R Y and Y ⊗R X are defined and
isomorphic by swapping the factors. Let P• → X and Q• → X be projective resolutions. Then
we have the isomorphism

P ⊗Q → Q⊗ P
vp ⊗ wq 7→ (−1)pqwq ⊗ vp for vp ∈ Pp and wq ∈ Qq

of double complexes. We thus find

TorR∗ (X, Y ) ∼= T̃or
R

∗ (X, Y ) = H∗(|P ⊗R Q|)
∼= H∗(|Q⊗R P |) = T̃or

R

∗ (X, Y ) = TorR∗ (Y,X)

In the case of commutative rings R the derived functor TorR∗ is thus commutative in both
arguments. In the case of Ext we can also resolve the second argument injectively instead of
resolving the first argument projectively:

Theorem 6.6.7 Let X, Y ∈ R−Mod and Y → I• be an injective resolution and P• → X a
projective resolution. Set:

Ext′nR (X, Y ) := Hn(HomR(X, I•)) and Ẽxt
n

R(X, Y ) := Hn(TotHomR(P•, I•)) .

Here we grade the complex of abelian groups by

Hom(P•, I•)i,j := Hom(P−i, Ij) .

Then we have
ExtnR(X, Y ) ∼= Ẽxt

n

R(X, Y ) ∼= Ext′nR (X, Y )

Proof. Exercise.
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6.7 Extensions of modules

We have already seen in Examples 6.5.2 that the notation “Tor” can be motivated by considering
torsion in abelian groups, but we have yet to make sense of the notation “Ext”. In this section
we discuss an alternative definition of Ext-groups via equivalence classes of extensions of R-
modules by other R-modules, which goes back to Yoneda.

Let C be an abelian category and let M,N be two objects in C. Consider for n ≥ 1 the sets
of exact sequences

Exn(M,N) = {0→ N → Xn−1 → Xn−2 → · · ·X0 →M → 0}/ ∼ ,

where ∼ is the equivalence relation that is generated by declaring E ∼ E ′ if there exists a chain
map E → E ′, which is the identity on the entries M and N . (Here it is not sufficient to require
isomorphism on the entries M and N .) Note that the Nine Lemma 1.5.8 implies in the case
n = 1 that the morphism X0 → X ′0 is an isomorphism. In general the components of the chain
maps are not isomorphisms.

We now aim to turn Exn into a functor Copp×C → Set. (In Lemma 6.7.2 we will see that it
takes values in abelian groups.) To define the functor on morphisms, suppose we are given an
extension

E = (0→ N → X• →M → 0) ∈ Ex•(M,N)

and morphisms
f : M ′ →M and g : N → N ′ .

Consider for f the pullback diagram

X1

%%

0

��

d

++

X0 ×M M ′

��

//M ′

f
��

X0
d //M

where the morphisms X1 → X0 →M are taken from the exact sequence E, and thus compose
to zero. Consider the complex

f ∗E : 0→ N → Xn−1 → · · · → X1 → X0 ×M M ′ →M ′ → 0

Dually we define by pushout under N a complex

g∗E : 0→ N ′ → Xn−1 tN N ′ → Xn−2 → · · · → X0 →M → 0 .

Lemma 6.7.1 Retain the notation from above.

1. The complexes f ∗E and g∗E are again exact. Their equivalence classes do not depend on
the choice of representatives E in Ex.

2. We obtain a functor Copp × C → Set.

Proof. 1. To see that these constructions are well-defined, we need to check that f ∗ does not
depend on the representatives E of the source equivalence class. Let

E : 0 // N // X•

��

//M // 0

E ′ : 0 // N // X ′• //M // 0
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be an a elementary equivalence of exact sequences and f : M ′ → M a morphism. Then
by functoriality of the pullback from Remarks 2.2.11.4, we obtain a map

X0 ×M M ′ → X ′0 ×M M ′ ,

that, together with the other morphisms Xi → X ′i, provides an elementary equivalence
between the complexes f ∗E and f ∗E ′. The dual argument applies to g∗.

2. We also need to show that f ∗E is exact and thus an extension, as required.

– The map X ×M M ′ → M ′ is surjective: for any m′ ∈ M ′ we can find x ∈ X0 with
f(m′) = dx because d : X0 →M is surjective. Then (x,m′) is a preimage of m′ ∈M ′

in the fibre product X0 ×M M ′.

– The morphism X1 → X0×M M ′ is x 7→ (dx, 0), and by d(dx) = 0 = f(0) this indeed
lands in the fibre product X0 ×M M ′. Thus we have the exactness condition

ker(X1 → X0 ×M M ′) = ker(X1 → X0) = Im (X2 → X1) .

by the exactness of the original sequence E.

– Finally, ker(X0×M M ′ →M ′) contains the elements of X0×M M ′ which are of the
form (x, 0). For these we must have dx = f(0) = 0. By exactness of E this means
x ∈ Im (X1 → X0) and thus (x, 0) ∈ Im (X1 → X0 ×M M ′).

The arguments for the exactness of the complex g∗E are again dual.

3. Now we consider the second part of the lemma, which concerns functoriality: let M2
f1→

M1
f0→M0 be two morphisms; we have to show that (f0 ◦ f1)∗E = f ∗1 ◦ f ∗0E. This follows

from the canonical isomorphism

(X0 ×M0 M1)×M1 M2
∼= X0 ×M0 M2 ,

compare Remark 2.2.11.5.

4. Finally we have to show f ∗g∗ = g∗f
∗ for f : M ′ → M and g : N → N ′. This is clear for

n ≥ 2, as both functors operate on different parts of the exact sequence. For n = 1, on
the other hand, we consider the diagram

N
g

}}
d
��

0

""
N ′

0 !!

X

d
��

M ′

f||
M

and thus obtain an isomorphism

(X ×M M ′) tN N ′ ∼= (X tN N ′)×N M ′

(best checked on elements), which provides an equivalence of the sequences f ∗g∗E and
g∗f

∗E.
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We aim to equip the sets Exn with the structure of abelian groups. Let E,E ′ ∈ Exn(M,N).
For n ≥ 2 we consider the pullback diagram

X1 ⊕X ′1

''

d′◦pr2

��

d◦pr1

,,

X0 ×M X ′0

��

// X ′0

d′

��
X0 d

//M

and the dual pushout diagram. We define a complex E + E ′ by direct sums and the dashed
morphism in the diagram:

E +E ′ : 0→ N → Xn−1 tN X ′n−1 → Xn−2⊕X ′n−2 → · · · → X1⊕X ′1 → X0×M X ′0 →M → 0 .

In case n = 1 we have to define the middle term of the complex E + E ′ as

{(x, x′) ∈ X ⊕X ′|d(x) = d′(x′)}/(d(n), 0) ∼ (0, d′(n))(n ∈ N) .

Lemma 6.7.2 The sets Exn(M,N) are thus equipped with the structure of abelian groups.

Proof. • We first verify the exactness of the complex E + E ′.

– The exactness is clear at the middle (direct sums-)groups.

– Exactness at M is surjectivity: given m ∈ M , find x0 ∈ X0 and x′0 ∈ X ′0 with
dx0 = m and d′x′0 = m using the surjectivity in the extensions E,E ′. Then (x0, x

′
0)

is the desired preimage.

– Exactness at X0 ×M X ′0: The kernel in X0 ×M X ′0 is exactly

ker(X0 →M)×M ker(X ′0 →M) = Im (X1 ⊕X ′1 → X0 ×M X ′0).

– The exactness at N and at Xn−1 tN X ′n−1 follows dually.

• The associativity and commutativity of the sum is manifest in the definition. We describe
the neutral element; for n ≥ 2 it is given by

0→ N
id→ N → 0→ · · · →M

id→M → 0

resp. for n = 1 by the splitting short exact sequence.

• The proof of the existence of inverses is omitted.

The following theorem explains the notation Ext for the right derived functor of the Hom-
functor. It also makes extensions of modules computable via projective resolutions.

Theorem 6.7.3 If the category C has enough projectives, then there exists a natural iso-
morphism of functors Exn ∼= Extn.
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Proof. • Let P• → M be a projective resolution of M . Let E ∈ Exn(M,N). Then by
Theorem 6.3.1 the lifting problem for the identity idM

· · · // Pn+1

��

d // Pn

fn
��

// Pn−1

fn−1

��

// Pn−2

fn−2

��

// · · · // P0

f0
��

//M // 0

E : 0 // N // Xn−1
// Xn−2

// · · · // X0
//M // 0

has a solution. By commutativity of the leftmost square we have fn ◦ d = 0, so

fn ∈ ker(Hom(Pn, N)
d∗→ Hom(Pn+1, N)) .

We can thus consider the class

Φ(E) := [fn] ∈ Extn(M,N) .

• We first show that Φ(E) ∈ Extn(M,N) is well-defined: this element depends neither
on the choice of lift f• of the identity idM nor on the choice of extension E within its
equivalence class. Then we show that Φ: Exn(M,N) → Extn(M,N) is an isomorphism
of abelian groups.

Theorem 6.3.1 shows that the lift fn : Pn → N not only exists but is also unique up
to homotopy. Thus every other solution is of the form fn + H ◦ d = fn + d∗(H), where
H : Pn−1 → N is part of a chain homotopy. Since this does not make any difference in
homology, the first part of well-definedness is shown.

Thus the class of fn in Hn(Hom(P•, N)) = Extn(M,N) is well-defined, provided we can
show that it is invariant under the equivalence relation in Ex. If E → E ′ is an elementary
equivalence, then we can choose the lift P• → E ′ of the identity in the special form of a
lift P• → E of idM , followed by the equivalence E → E ′. Since this is, by definition, the
identity on N , we obtain the same element in Extn.

• We now set out to construct an inverse to Φ. Let f : Pn → N be a representative of an
element of Extn(M,N). Consider the pushout diagram

Pn
d //

f

��

Pn−1

��
d

��

N //

0
22

N tPn Pn−1

&&
Pn−2

and construct from it (following arguments dual to those in the proof of Lemma 6.7.2)
an exact sequence

0→ N → N tPn Pn−1 → Pn−2 → Pn−3 → · · · → P0 →M → 0 .

This determines an element in Exn. It is clear that the composite Ext → Ex → Ext is
the identity; the other direction is given by the following diagram, that determines an
equivalence in Ex:

0 // N // N tPn Pn−1
//

(d,fn−1)

��

Pn−2

fn−2

��

// · · · // P0

f0
��

//M // 0

0 // N d // Xn−1
d // Xn−2

// · · · // X0
//M // 0
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• It is clear, that Φ sends the zero in Exn to the zero in Extn, because we can choose as lift
on Pn the zero morphism.

• We still have to show that the bijection between Extn and Exn respects the addition. For
this we first observe that we can characterize the addition in Extn as follows.

Let ∆: M →M ⊕M be the diagonal map and Σ: N ⊕N → N the sum map, then

Hom(M,N)⊕ Hom(M,N)→ Hom(M ⊕M,N ⊕N)
Σ∗∆∗−→ Hom(M,N)

is by
Σ ◦ (f, g) ◦∆(m) = Σ (f(m), g(m)) = f(m) + g(m)

the addition of abelian group Hom(M,N) and likewise

Ext(M,N)⊕ Ext(M,N)→ Ext(M ⊕M,N ⊕N)
Σ∗∆∗−→ Ext(M,N)

is the addition the abelian group Ext(M,N): we have

Σ∗∆
∗(f ⊕ g) = f + g .

For Exn the functoriality for ∆∗ was defined via a pullback and for Σ∗ via a pushforward,
see Lemma 6.7.1. Exactly the same operations also appear in the definition of the sum in
Lemma 6.7.2. Thus we also have in Exn:

E + E ′ ∼= Σ∗∆
∗(E ⊕ E ′) ,

where E⊕E ′ is the direct sum sequence from N ⊕N to M ⊕M . If we choose a projective
resolution P• of M , then in the diagram

· · · // Pn ⊕ Pn
(fn,f ′n)

��

// · · · // P0 ⊕ P0

(fn,f ′n)
��

// M ⊕M // 0

E ⊕ E ′ : N ⊕N // · · · // X0 ⊕X ′0 // M ⊕M // 0

we can choose the lift as the direct sum of the lifts f, f ′ that correspond to E resp. E ′.
The application of Σ∗∆

∗ then shows the additivity.

Example 6.7.4 Let p be a prime number; then by Examples 6.5.2 we have
Ext1

Ab(Z/pZ,Z/pZ) = Z/pZ in the category the abelian groups. We thus know that there
are p equivalence classes of extensions:

0→ Z/pZ→ G→ Z/pZ→ 0

For the non-trivial group elements of Ext1
Ab(Z/pZ,Z/pZ) we have G ∼= Z/p2Z, and for the

neutral element G ∼= Z/pZ× Z/pZ.

The interpretation via the Yoneda-Ext allows us to find more structure on the collection
of groups Ext∗(M,N). If E ∈ Exn(M,N), E ′ ∈ Exm(Q,M) with m > 0 and n > 0, then the
composite X0 → M → X ′m−1 gives a morphism. From the exactness of X1 → X0 → M → 0
and 0→M → X ′m−1 we deduce that

0 // N // Xn−1
// · · · // X0

//

""

X ′m−1
// · · · // X ′0 // Q

M

OO
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is again an extension.
We define Ex0(M,N) to be Hom(M,N); the multiplication Ex0 ×Ex0 → Ex0 is simply the

composition of morphisms. Further we set:

Ex0 × Exn → Ex0 , Exn × Ex0 → Ex0

(f, E) 7→ f ∗E , (E, g) 7→ g∗E

Theorem 6.7.5 [Yoneda product] If E ∈ Exn(M,N), E ′ ∈ Exm(Q,M), then we define the
Yoneda product EE ′ ∈ Exn+m(Q,N) to be represented by the extension

0→ N → Xn−1 → · · · → X0 → X ′m−1 → · · · → X ′0 → Q ,

The map (E,E ′) 7→ E · E ′ is a well-defined, bilinear, associative multiplication.

Proof. The associativity for n,m > 0 is immediately clear. Similarly the well-definedness, as
any two elementary equivalences can be glued to an equivalence of the product.

The associativity for the cases n = 0 and m = 0 is a reformulation of the functoriality of
Exn from Lemma 6.7.1.

6.8 The Künneth formula

In Definition 6.6.3.2 we have defined the tensor product of chain complexes X• and Y• of R-
modules as total complex |X• ⊗R Y•|. We would like to express the homology of such a tensor
product C• ⊗R D• in terms of the homologies of C• and D•. Here we restrict to the case when
R is a PID. In particular, R will be commutative.

Example 6.8.1 Let R = Z and let C• = D• be complexes concentrated in degree zero

with entry Z/2Z. Let C ′• be the complex with Z in degrees 0 and 1 and 0 → Z ·2→ Z → 0.
By Remarks 6.2.3, the complexes C• and C ′• are quasi-isomorphic, and thus have isomorphic
homology,

Hp(C•) = Hp(C
′
•) for all p ∈ Z .

Now we have H1(C• ⊗D•) = 0, but H1(C ′• ⊗D•) = Z/2Z because

C ′• ⊗D• : 0→ Z/2Z 0→ Z/2Z→ 0 .

The tensor product of the quasi-isomorphic complexes C• and C ′• with the complex D• are
thus no longer quasi-isomorphic! The tensor product is not compatible with quasi-isomorphisms!

In particular, knowing the homology of the complexes is not sufficient to determine the
homology of the tensor product. Put differently, if one considers complexes up to quasi-
isomorphism as the fundamental objects, then one needs a different definition of the tensor
product.

In the following theorem we make additional assumptions that, in particular, exclude torsion
groups concentrated in a single degree, such as the ones in Example 6.8.1.

Theorem 6.8.2 [Künneth] Let C•, D• be chain complexes of modules over a PID R. Suppose
that one of the two complexes is flat, i.e. all involved modules are flat. Then there exists a natural
short exact sequence

0→
⊕
p+q=n

Hp(C•)⊗R Hq(D•)
ζ→ Hn(C• ⊗D•)→

⊕
p+q=n−1

TorR1 (Hp(C•), Hq(D•))→ 0 ,
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where ζ is induced by the inclusion

Zp(C•)⊗R Zq(D•)→ Zp+q(C• ⊗R D•)

of cycles. The sequence splits, though not naturally.

Proof. • Using the swap isomorphism of tensor product complexes over the ring R

C• ⊗R D• → D• ⊗R C•
c⊗ d 7→ (−1)pqd⊗ c for c ∈ Cp and d ∈ Dq

we may assume without loss of generality that the complex C• is flat.

• We introduce shorthand notation for cycles and boundaries

Zp := Zp(C•) Bp := Bp(C•)
Zp := Zp(D•) Bp := Bp(D•)

and consider the the associated complexes with vanishing differential. We obtain an exact
sequence of complexes

0→ Z•
ι→ C•

∂→ B[−1]• → 0 .

Since R is a PID, all these complexes are again flat, since they consist of subobjects of
flat objects. As in the proof of Theorem 6.6.6 we obtain an exact sequence of complexes

0→ Z• ⊗R D•
ι⊗id→ C• ⊗R D•

∂⊗id→ B[−1]• ⊗R D• → 0 .

By Theorem 6.4.3 this gives rise to a long exact sequence in homology, that we symboli-
cally represent by:

H(Z• ⊗R D•)
(ι⊗id)∗ // H(C• ⊗R D•)

(∂⊗id)∗uu
H(B•[−1]⊗R D•)

ω
ii

,

where all morphisms have degree zero, except the morphism ω, which is generated by the
connecting morphisms and which has degree −1. Undoing the degree shift at B• we can
also consider ω of degree zero and ∂ of degree −1.

• We inspect the homology H(B[−1] ⊗R D•). In the first tensor factor the differential is
trivial and (after changing signs) we may work with the differential id⊗ ∂. As all the Bn

are flat, the kernels and images of this differential are tensor products of the kernel and
images of the differential in D•. Thus we have

Hn(B[−1]• ⊗R D•) = (B• ⊗R H(D•))n−1

Analogously we get
Hn(Z• ⊗R D•) = (Z• ⊗R H(D•))n .

Thus we have a long exact sequence in homology

Z• ⊗R H(D•)
(ι⊗id)∗ // H(C• ⊗R D•)

(∂⊗id)∗vv
B• ⊗R H(D•)

ω
hh

(∗)
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• We still have to inspect the morphism ω that comes from the connecting morphism. If we
represent ∂c⊗ [z] ∈ B ⊗R H(D•) by ∂c⊗ z then we see that ω(∂c⊗ [z]) is the homology
class of ∂c⊗ z in Z• ⊗H(D•). Thus ω is induced by the inclusion B• → Z•.

Thus it is clear that (ι ⊗ id)∗ induces the map H(C•) ⊗R H(D•)
ζ→ Hn(C• ⊗ D•) when

computing modulo boundaries, i.e. modulo the image of ω.

• We need another exact sequence: tensoring the short exact sequence

0→ B• → Z• → H(C•)→ 0

with H(D•) and noting TorR1 (Z•, H(D•)) = 0, because Z• is flat, the long exact sequence
in homology yields the exact sequence

0→ TorR1 (H(C•), H(D•))→ B•⊗RH(D•)
ω→ Z•⊗RH(D•)→ H(C•)⊗RH(D•)→ 0 (∗∗)

of complexes.

By (∗) the kernel of ζ is the image of ω. Thus we have Z• ⊗R H(D•)/ ker ζ = cokerω
(∗∗)
=

H(C•)⊗R H(D•) and we obtain the injection

0→ H(C•)⊗R H(D•)
ζ→ H(C• ⊗R D•) .

We still have to compute the cokernel of ζ. We find

cokerζ = H(C• ⊗R D•)/Im ζ
(∗)
= H(C• ⊗R D•)/ ker(∂ ⊗ id)∗

(H)
= Im (∂ ⊗ id)∗

(∗)
= kerω

(∗∗)
= TorR1 (H(C•), H(D•)) .

where we have used the homomorphism theorem at (H).

• For a proof of the fact that the Künneth sequence splits, we refer to [HS1970, V.2].

An important special case is when C• is flat and D• is an R-module A concentrated in
degree 0.

Corollary 6.8.3 [Universal coefficient theorem in homology] Let R be a PID, C• a flat chain
complex of R-modules and A an R-module. Then there exists a natural short exact sequence

0→ Hn(C•)⊗R A
ζ→ Hn(C• ⊗R A)→ TorR1 (Hn−1(C•), A)→ 0 .

This exact sequence splits, naturally in A, though not naturally in C•.

Proof. Only the naturality statement is still open, and we refer again to [HS1970] for a proof.

We also state the corresponding theorem for Ext, a proof appears in [HS1970, V.3].

Theorem 6.8.4 Let C•, D• be chain complexes of modules over a PID R. Assume that the
complex C• is free. Then there exists a natural short exact sequence

0→
∏

q−p=n+1

Ext1
R(Hp(C•), Hq(D•))→ Hn(HomR(C•, D•)

ζ→
⊕
q−p=n

HomR(Hp(C•), Hq(D•))→ 0 ,

where ζ maps the morphism f ∈ Zn(HomR(C•, D•)) to the induced morphism Fn : Hn(C•) →
Hn(D•). The sequence splits, though not naturally.
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Analogously we get:

Corollary 6.8.5 [Universal coefficient theorem in cohomology] Let R be a PID, C• a free
chain complex of R-modules, and B an R-module. Then there exists a natural short exact
sequence

0→ Ext1
R(Hn−1(C•), B)→ Hn(HomR(C•, B))

ζ→ HomR(Hn(C•), B)→ 0 .

This exact sequence splits, naturally in B, though not naturally in C•.

7 Group cohomology

7.1 Definition and examples

Let G be a group. By a G-module we mean Z[G]-module in this chapter. This is nothing but
an abelian group M with a G-action G → AutZ(M) by morphisms of abelian groups. If A is
an abelian group, then we may consider A as G-module with the trivial action, ρ(g) = idA for
all g ∈ G.

We first define:

Definition 7.1.1 The invariants MG of a G-module M are the fixed points of the G-action:

MG = {m ∈M |g.m = m for all g ∈ G} ,

i.e. the largest trivial submodule. The coinvariants MG are defined as the quotient abelian group

MG = M/(gm−m|g ∈ G,m ∈M) ,

i.e. as the largest trivial quotient.

We turn invariants and coinvariants into additive functors

(−)G, (−)G : Z[G]−Mod→ Ab ,

that are defined on Z[G]-module homomorphism f : M → N as follows. By g.m = m for all
g ∈ G we get g.f(m) = f(g.m) = f(m) for all g ∈ G, and so the the restriction of f to the
invariants MG yields a homomorphism fG : MG → NG of abelian groups. Since f(gm−m) =

gf(m)−f(m), the homomorphism M
f→ N

can→ NG factors through a homomorphism of abelian
groups fG : MG → NG on the coinvariants,

M
f //

can
��

N

can
��

MG
// NG

Lemma 7.1.2 There exist natural isomorphisms MG ∼= HomZ[G](Z,M) and MG
∼= Z⊗Z[G]M ,

where the abelian group Z is equipped with the trivial left- resp. right module structure. In
particular, by Example 3.1.14.4, the functor of taking invariants (−)G is left exact and the
functor of taking coinvariants (−)G is right exact by Example 3.1.14.3.
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Proof. For the first isomorphism, we note that an element of HomZ(Z,M) is uniquely deter-
mined by the value on 1 ∈ Z. For such a homomorphism to lie in HomZ[G](Z,M) ⊂ HomZ(Z,M),
we must have for all g ∈ G that g.f(1) = f(g.1) = f(1), hence f(1) ∈ MG. Conversely, every
such x ∈MG defines a morphism in HomZ[G](Z,M).

For the second isomorphism we consider the surjective map

φ : M → Z⊗Z[G] M
m 7→ 1⊗m

In the abelian group Z⊗Z[G] M we have

1⊗ (gm−m) = (1.g)⊗m− 1⊗m = 0 ,

and so the map φ descends to the quotient MG, i.e. to the coinvariants. The map φ and thus
also its induced map is surjective. It is clear that 1 ⊗ m and 1 ⊗ m′ are equal if and only if
m ∈M and m′ ∈M represent the same class in the coinvariants.

Definition 7.1.3 Let M be a Z[G]-module.

1. The nth homology of the group G with coefficients in the Z[G]-module M is defined as
the nth left derived functor of the coinvariants:

Hn(G;M) := (Ln(−)G)(M) = TorZ[G]
n (Z,M) .

2. The nth cohomology of the group G with coefficients in the Z[G]-module M is defined as

Hn(G;M) := (Rn(−)G)(M) = ExtnZ[G](Z,M) .

IfM is the trivialG-module Z, then we abbreviateHn(G) := Hn(G,Z) andHn(G) := Hn(G,Z).

Remark 7.1.4 The preceding definitions also make sense for monoids in place of groups G.
Several effective methods work only for groups, so we restrict to this case.

Example 7.1.5 (homology of a cyclic group Cn)

1. Let G = Cn = 〈t〉 be a cyclic group of order n ∈ N with generator t ∈ G. Then
R := Z[G] ∼= Z[t]/(tn − 1), and we have already computed the homology in Example
6.5.2.3:

Hk(Cn) ∼=


Z, if k = 0 ;
Z/nZ, if k odd ;
0, otherwise.

2. Now we consider the abelian group A = Z/nZ with the trivial Z[G]-module structure as
coefficients. After tensoring the resolution from Example 6.5.2.3

· · · N→ R
1−t→ R

N→ R
1−t→ R

ε→ Z→ 0 (∗)

(recall N := 1 + t+ · · ·+ tn−1) with Z/nZ, we get the complex

. . .
0→ Z/nZ 0→ Z/nZ→ 0

and thus Hk(Cn;Z/nZ) ∼= Z/nZ for all k ≥ 0.
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3. Next we consider an arbitrary module over a cyclic group Cn. The image of the multi-
plication by N = 1 + t + · · · + tn−1 is contained in the invariants MG since gN = N for
all g ∈ Cn. The multiplication thus maps M → MG. Furthermore, Ngm = Nm for all
g ∈ Cn and so the multiplication by N descends to a so-called norm map N̄ : MG →MG

on the quotient MG.

In the case of a cyclic group with generator t we have for the invariants resp. coinvariants

ker(1− t) = MG resp. M/Im (1− t) = MG

and thus

kerN/Im (1− t) = ker N̄ resp. ker(1− t)/ImN = MG/Im N̄ = cokerN̄ .

By tensoring the resolution (∗) from Example 6.5.2.3 with M we get the complex

· · ·M 1−t→ M
N→M

1−t→ M → 0

and thus

Hk(Zn;M) ∼=


M/Im (1− t) = MG, if k = 0 (cf. Lemma 6.3.5);
ker(1− t)/ImN = cokerN̄ , if k odd;
kerN/Im (1− t) = ker N̄ , if k > 0 and k even.

4. Analogously we can compute the cohomology. By applying HomR(−,M) to the resolution
(∗) from Example 6.5.2.3 we get the complex

0→M
1−t→ M

N→M
1−t→ M

N→ · · ·

and thus

Hk(Zn;M) ∼=


ker(1− t) = MG if k = 0 (cf. Lemma 6.3.5);
kerN/Im (1− t) = ker N̄ , if k odd;
ker(1− t)/ImN = cokerN̄ , if k > 0 even.

Example 7.1.6 (homology of the free abelian group Z) The group ring of the group G = Z
is Z[G] ∼= Z[t, t−1], i.e. the ring of Laurent polynomials amt

m + · · · + ant
n with m ≤ n and

n,∈ Z and an ∈ Z. A free resolution of the trivial module Z as Z[G]-module is given by the
augmented complex

0→ Z[t, t−1]
1−t→ Z[t, t−1]

t7→1→ Z→ 0 .

Tensoring the corresponding resolution with a module M over Z[G], one obtains the complex

0→M
1−t→ M → 0

from which we get

H0(G;M) = M/Im (1− t) = MG and H1(G;M) = ker(1− t) = MG .

The result for H0(G,M) again agrees with Lemma 6.3.5. The application of HomZ(−,M) yields
the same complex, but with different grading, and thus

H0(G;M) = H1(G;M) = MG and H1(G;M) = H0(G;M) = MG .

Alle higher homology and cohomology groups vanish since the resolution of the trivial Z[G]-
module Z has length 2.
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Remark 7.1.7 (Maschke’s theorem) We can interpret Maschke’s theorem as a consequence
of a statement concerning group cohomology. Let G be a finite group and K a field, whose
characteristic does not divide the order |G| of the group. One can show (cf. [HS1970, Lemma
VI.16.7]) that for every K[G]-module W and all n ≥ 1 one has Hn(G,W ) = 0. We show that
this vanishing result implies Maschke’s Theorem 4.3.13.

To see this we let
0→ V ′ → V → V ′′ → 0

be an arbitrary short exact sequence of K[G]-modules. We aim to show that the induced
sequence

0→ HomG(V ′′, V ′)→ HomG(V, V ′)→ HomG(V ′, V ′)→ 0 (∗)

is exact. Then any preimage of the identity idV ′ yields a retraction V → V ′ of K[G]-modules, so
that the exact sequence 0→ V ′ → V → V ′′ → 0 splits, cf. Theorem 1.4.3. To see the exactness
of (∗), we consider the corresponding short exact sequence of K-vector spaces,

0→ HomK(V ′′, V ′)→ HomK(V, V ′)→ HomK(V ′, V ′)→ 0 ,

that we may interpret as exact sequence of K[G]-modules. The G-action on these vector spaces
of linear maps is given by

K[G]× HomK(V,W ) → HomK(V,W )
(g, ϕ) 7→ g.ϕ(g−1−) .

Since the elements of HomG(V,W ) are exactly the G-invariants in the K[G]-module
HomK(V,W ) we have to show that the sequence of invariants

0→ H0(G,HomK(V ′, V ′))→ H0(G,HomK(V, V ′))→ H0(G,HomK(V ′′, V ′))→ 0

is exact. This follows via the long exact sequence 6.4.4 from H1(G,W ) = 0 with the K[G]-
module W = HomK(V ′, V ′).

7.2 Functoriality

Homology and cohomology are functors, but the definition requires some care.

Definition 7.2.1 Let GrpMod be the category, whose objects are pairs, consisting of a group
G and a G-module M , and whose morphisms are defined by

HomGrpMod((G,M), (G′,M ′)) := {α : G→ G′, f : M →M ′|f(g.m) = α(g)f(m)
and α group homomorphism} .

Remarks 7.2.2

1. A morphism (α, f) : (G,M) → (G′, N) is thus a morphism f : M → α∗N of K[G]-
modules, where α∗N denotes the K[G]-module obtained by pullback along α, i.e. re-
striction of scalars, from N .

2. For a fixed G one can consider the category ModZ[G] as subcategory of GrpMod. This
subcategory is not full, since GrpMod has more morphisms, namely also those with α 6=
idG. We know that homology is a functor on this subcategory, because of the functoriality
of Tor in the second argument.
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3. On the other hand, one can fix an abelian group M and consider Grp ↪→ GrpMod as a
subcategory by mapping the group G to (G,M) with the trivial G-module structure on M .
Once we know that group homology is a functor, we obtain for every group homomorphism
α : G → H an induced map α∗ : Hi(G) → Hi(H) on the group homology with trivial
coefficients.

Theorem 7.2.3 Group homology defines a functor GrpMod→ Ab in every degree.

Proof. We have to define the functor on morphisms. Let (α, f) : (G,M) → (H,N) be a mor-
phism in GrpMod. Choose projective resolutions P• →M over the ring Z[G] and Q• → N over
Z[H]. We can pull back all H-modules Qn in Q• along α to G-modules, and thus consider Q•
as complex of Z[G]-modules, with the same map as differential. This complex may no longer be
projective; but since the differential is unchanged, the complex is still acyclic. By Theorem 6.3.1
there exists an up to homotopy unique lift f• : P• → α∗(Q)• of the morphism f : M → α∗(N)
of G-modules. This induces a morphism of complexes of abelian groups

id⊗ f• : Z⊗Z[G] P• → Z⊗Z[G] α
∗(Q)• .

The tensor product Z⊗Z[G] α
∗(Q)• on the right hand side surjects to Hi(H;N). Hence, we get

a well-defined map (α, f)∗ : Hi(G;M) → Hi(H;N). The functoriality is a consequence of the
uniqueness of the lift up to homotopy.

Example 7.2.4 We show that the surjective group homomorphism α : Z→ Z/nZ induces a
surjective morphism on the homology group H1(−;Z). We consider the standard resolutions of
the trivial modules from Example 7.1.5 and Example 7.1.6 and an obvious lift of the identity
on the trivial module Z:

0 // Z[t, t−1]

t7→t
��

1−t // Z[t, t−1] //

t 7→t
��

Z // 0

· · · N // Z[t]/(tn − 1)
1−t // Z[t]/(tn − 1) // Z // 0

By passing to coinvariants on the resolutions we obtain the chain map

0 // Z 0 // Z // 0

· · · n // Z 0 // Z // 0

and so the map on H1(−,Z) is the standard reduction Z→ Z/nZ of abelian groups.

Theorem 7.2.5 Let G be a group and M a G-module. Let g0 ∈ G and consider the au-
tomorphism (α, f) : M → M in GrpMod given by α(g) := g0gg

−1
0 and f(m) := g0.m. 3 This

induces the identity in homology, (α, f)∗ = idH∗(G;M).

Proof. Let P• →M be a projective resolution of M over the ring Z[G]. Define an automorphism
of P• by τ(x) = g0.x for x ∈ Pn, for all n. Then τ is an automorphism of chain complexes,
that extends the morphism f : M → M , thus the morphism (α, f)∗ can be computed as the
map induced by τ in homology. But upon tensoring with the trivial module Z, on which g0 acts
trivially, we have that

idZ ⊗Z τ : Z⊗Z[G] Pn → Z⊗Z[G] Pn

is the identity.
3Then we have f(gm) = g0gm = g0gg

−1
0 g0m = α(g)f(m).
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Remark 7.2.6 IfG is a group, then the automorphism that can be represented as conjugation
are called the inner automorphisms; these form a normal subgroup Inn(G) ⊂ Aut(G). The
quotient group Out(G) = Aut(G)/Inn(G) is called the group of outer automorphisms. Then
Theorem 7.2.5 shows, that the group homology H∗(G) carries an action of the quotient group
Out(G).

7.3 The bar resolution

In the previous examples we have always constructed resolutions by hand and in an ad hoc
way. It is natural to ask whether there is a canonical, functorial way to construct a resolution
of a module over Z[G]. Indeed there ist, but only rarely is it helpful for explicitly computating
the entire group homology, because it is so large.

Definition 7.3.1 Let R be a ring and M an R-module. To define the bar complex B•(R;M),
we consider for n ≥ 0 the abelian groups

Bn(R;M) := R⊗n+1 ⊗Z M ≡ R⊗Z · · · ⊗Z R⊗Z M.

For historical reasons we use the notation a|b for a⊗ b; this is where the name comes from. We
equip the abelian group Bn(R;M) with an R-module structure by left multiplication

r.(r0| · · · |rn|m) := rr0|r1| · · · |rn|m .

Finally we define the differentials d : Bn(R,M)→ Bn−1(R,M) by

d :=
n∑
i=0

(−1)idi with di(r0| · · · |rn|m) := r0| · · · |riri+1| · · · |rn|m ,

with ri ∈ R for i ≤ n and rn+1 = m ∈M .

Theorem 7.3.2 The complex B•(R;M) is a resolution of M over R, i.e. an acyclic complex
of R-modules with surjection to M .

Proof. In order to show that B•(R;M) a complex is, we note that

di ◦ dj = dj ◦ di+1 if i ≥ j (∗)

holds. It is instructive to check that for i = j + 1 this equation uses the associativity of the
multiplication in R and the module properties of M . Now we compute

d ◦ d def
=

∑n−1
i=0

∑n
j=0(−1)i+jdi ◦ dj

=
∑n−1

i=0

∑i
j=0(−1)i+jdi ◦ dj +

∑n−1
i=0

∑n
j=i+1(−1)i+jdi ◦ dj

(∗)
=

∑n
i=1

∑i−1
j=0(−1)i+j−1dj ◦ di +

∑n−1
i=0

∑n
j=i+1(−1)i+jdi ◦ dj

=
∑n−1

j=0

∑n
i=j+1(−1)i+j−1dj ◦ di +

∑n−1
i=0

∑n
j=i+1(−1)i+jdi ◦ dj = 0 .

Here we first split the sum, then apply the relation (∗) to the first summands and finally reorder
the first sum.

We have to show that the complex B•(R;M) is exact upon augmenting with the obvious
surjection to M , which we temporarily denote by M =: B−1(R;M). To this end we construct
a contracting homotopy, i.e. a chain homotopy h : Bn(R;M) → Bn+1(R;M) for n ≥ −1, such
that h ◦ d+ d ◦ h = id. For this we use the unit 1 ∈ R and set

h(r0| · · · |rn|m) := 1|r0| · · · |rn|m .
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Then we have h ◦ di = di+1 ◦ h for i = 0, . . . , n and thus

d ◦ h+ h ◦ d def
=

n+1∑
i=0

(−1)idi ◦ h+
n∑
i=0

(−1)ih ◦ di = d0 ◦ h = id .

Remarks 7.3.3

1. The R-module Bn(R,M) is not necessarily projective; for example when R = Z and
M = Z/nZ, we have Bn(R;M) = R⊗n+1 ⊗Z Z/nZ = Z/nZ. However, if the ring R and
the module M are free as abelian groups, then Bn(R;M) is a free R-module for all n,
since we tensor over Z. We have found a free and, in particular, projective resolution.

2. Group rings R = R̃[G] are always free as abelian groups, whenever the ground ring R̃ is
free as abelian group.

3. More generally, if K is a commutative ground ring, R is a K-algebra, and if all tensor
products in Bn(R;M) are formed over K instead if Z, then Bn(R;M) is a free R-module
whenever R and M are free K-modules. For a field K this is always the case.

We can now give a concrete interpretation of the first homology group in terms of classical
algebraic notions.

Example 7.3.4 (First homology)

• We recall the concept of abelianization: Let G be an arbitrary group, and denote by Gab

the abelianization, i.e. the maximal abelian quotient of G. Then Gab = G/G′, where G′

is the normal subgroup generated by the commutators [x, y] := xyx−1y−1 with x, y ∈ G.

By Examples 2.3.2.5 abelianization is the left adjoint functor to the inclusion functor
Ab→ Grp. For every abelian group A we thus have

HomGrp(G,A) ∼= HomZ(Gab, A) .

The corresponding universal property determines Gab up to unique isomorphism.

• We claim that for all groups we have H1(G;Z) ∼= Gab. To see this, we consider the start
of the bar resolution of the trivial module Z over Z[G] and note:

Bn(Z[G],Z) = Z[G]⊗Z(n+1) ⊗Z Z ∼= Z[G]⊗Z(n+1)

The first differentials are:

Z[G]⊗Z Z[G]⊗Z Z[G] // Z[G]⊗Z Z[G] // Z[G]

g0|g1|g2
� // g0g1|g2 − g0|g1g2 + g0|g1

g0|g1
� // g0g1 − g0

Note that on the trivial module the rightmost element acts trivially. Since Z is a free
Z-module, we have found a free resolution of the trivial Z[G]-module Z. To compute the
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homology H1(G,Z) with coefficients in the trivial module Z, we tensor this sequence on
the left with the trivial Z[G]-module Z over Z[G] and obtain

Z[G]⊗Z Z[G] // Z[G] // Z

g1|g2
� // g2 − g1g2 + g1

g � // 0

Thus we have
H1(G;Z) = Z[G]/(g1 + g2 − g1g2 ‖ g1, g2 ∈ G) .

• The map
G→ Z[G]

can→ Z[G]/(g1 + g2 − g1g2 ‖ g1, g2 ∈ G) ∼= H1(G;Z)

is an epimorphism of groups because in the quotient the class of ng ∈ Z[G] equals the
class of gn. It thus suffices to show that this map satisfies the universal property of the
abelianization, i.e. that every group homomorphism f : G → A into an abelian group
factors uniquely through H1(G;Z). Since A is abelian, one can extend f uniquely to a
homomorphism Z[G]→ A, namely by

∑
g agg 7→

∑
g agf(g). Under this map an element

of the form g1 + g2 − g1g2 is sent to zero because f is a group homomorphism. Thus
H1(G;Z) satisfies the universal property of the abelianization, see Example 2.3.2.3.

7.4 Group cohomology and group extensions

Observation 7.4.1

1. Let G′/G be a normal subgroup in a group G with quotient group G′′. We take the liberty
to encode this by an exact sequence 1→ G′ → G→ G′′ → 1, even though the category of
groups is not abelian. In this case we call G an extension of G′′ by G′. Two extensions are
said to be equivalent, if there exists a commutative diagram of group homomorphisms:

G1

f

��

!!
1 // G′

>>

  

G′′ // 1

G2

==

In this case f is automatically an isomorphism: The commutativity of the right triangle
means ker f ⊂ ker(G1 → G′′). If x ∈ ker f ⊂ ker(G1 → G′′) = Im (G′ → G1), then we can
find a preimage y ∈ G′, which is mapped injectively into G2. There the image f(x) is the
neutral element, and so the two elements y ∈ G′ and also x ∈ G1 are both the neutral
elements. Thus f is injective.

To verify surjectivity, consider x2 ∈ G2 and its image x′′ ∈ G′′, for which we can find a
preimage x1 ∈ G1. Then f(x1) and x2 have the same image in G′′, and so f(x1)x−1

2 ∈
ker(G2 → G′′) = Im (G′ → G2). Thus f(x1) = x2ι2(g′) = x2f(ι1g

′) for some g′ ∈ G′. We
have x2 = f(x1ι1(g′)−1) and so f is surjective.
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2. Consider an extension 1 → G′ → G → G′′ → 1 with abelian normal subgroup G′. Then
the quotient group G′′, which is not necessarily abelian, acts on the abelian group G′ as
follows. Let g ∈ G be a preimage of g′′ ∈ G′′. For g0 ∈ G′ we set

g′′.g0 := gg0g
−1 .

As G′ is a normal subgroup, the element g′′.g0 is again in G′. The choice of preimage g of
g′′ is immaterial, since any two choices differ by conjugation by an element of the abelian
group G′, and conjugation by elements of G′ is the identity on on the abelian group G′.

3. Conversely, every action α : G′′ → Aut(G′) of G′′ on an arbitrary group G′ by group
automorphisms gives rise to an extension G = G′ oα G

′′, called the semi-direct product .
The underlying set of G is G′ ×G′′, and the multiplication is defined by

(g′1, g
′′
1) · (g′2, g′′2) := (g′1(g′′1 .g

′
2), g′′1g

′′
2) .

This defines a group, and we sometimes suppress the datum α from the notation G′oαG
′′

by simply writing G′ oG′′ instead. The group homomorphisms

G′ → G′ oG′′

g′ 7→ (g′, e)

and
G′ oG′′ → G′′

(g′, g′′) 7→ g′′

give an extension 1→ G′ → G′ oG′′ → G′′ → 1. In particular, G′ is a normal subgroup.
(The mnemonic for the symbol o: the pointy end of the triangle is towards the normal
subgroup). More specifically, one can verify that conjugation by (e, g′′) in G′oG′′ recovers
the automorphism α:

(e, g′′)(g′, e)(e, g′′)−1 = (α(g′′)(g′), e) .

4. The extension 1 → G′ → G′ o G′′ → G′′ → 1 splits, with a section given by the group
homomorphism s0 : G′′ → G′ o G′′ that sends g′′ 7→ (1, g′′). Two sections s1, s2 : G′′ →
G′ oG′′ are said to be equivalent, if they differ by conjugation with an element from G′,
i.e. if s2(g′′) = g′s1(g′′)(g′)−1 for some g′ ∈ G′ and for all g′′ ∈ G′′. Conversely, every split
extension exhibits the middle group as isomorphic to a semi-direct product of the outer
two groups.

5. Two natural questions arise:

• Do all extensions split, so that we have a semi-direct product? If not, how can one
classify extensions up to equivalence?

• in case we have a semidirect product: is s0 the only possible section? If not, how can
one describe the set of all sections up to equivalence?

6. Group cohomology answers both questions, at least for abelian normal subgroups G′. We
first consider the second item. A section s = (δ, id) : G′′ → G′ oG′′ must be the identity
on the second coordinate. We write the first component with values in an abelian group
G′ additively. The section is required to be a group homomorphism,

(δg′′1 , g
′′
1) · (δg′′2 , g′′2) = (δg′′1 + g′′1 .δg

′′
2 , g
′′
1g
′′
2)

!
= (δ(g′′1g

′′
2), g′′1g

′′
2) ,

and so the function δ : G′′ → G′, that determines the section s, must satisfy the equation

δ(g′′1g
′′
2) = δ(g′′1) + g′′1 .δ(g

′′
2) . (3)
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7. If two functions δ1, δ2 : G′′ → G′ both satisfy the equation (3), then so does their sum
δ1 + δ2; this defines an abelian group structure on the set of all sections. A section δ is
equivalent to the zero section s0 if and only if there exists a g′ ∈ G′ such that

δ(g′′) = g′ − g′′.(g′) for all g′′ ∈ G′′ .

Theorem 7.4.2 Let G′ be an abelian group; let G′′ be a group that acts by group automor-
phisms on G′ via α : G′′ → Aut(G′). Then the group of sections G′′ → G′oαG

′′ up to equivalence
is isomorphic to H1(G′′, G′), where we consider the abelian group G′ as a G′′-module using the
action α.

Proof. • As in Example 7.3.4 we consider the bar resolution of the trivial G′′-module Z and
study the complex of abelian groups with

Cn := HomZ[G′′](Z[G′′]⊗n+1, G′) .

Then by definition of group cohomology we have Hn(G′′, G′) = Hn(C•). A 1-cochain in
C1 is a Z[G′′]-linear morphism with values in the abelian group G′,

f : Z[G′′]⊗Z Z[G′′]→ G′ .

By the isomorphism for induced Z[G′′]-modules

HomZ[G′′](Z[G′′]⊗Z Z[G′′], G′) → HomZ(Z[G′′], G′)
f 7→ s(−) = f(1,−)

this function is equivalent to a Z-linear morphism s : Z[G′′]→ G′. (Conversely f(g′′1 |g′′2) =
g′′1 .s(g

′′
2).) The morphism of abelian groups s : Z[G′′]→ G′ is determined by its values on

the basis G′′ ⊂ Z[G′′] and thus equivalent to a function δ : G′′ → G′. The function f is a
cocycle in the resolution if and only if

0 = df(g′′0 |g′′1 |g′′2) = f(g′′0g
′′
1 |g′′2)− f(g′′0 |g′′1g′′2) + f(g′′0 |g′′1)

gilt, i.e. if and only if (for g′′0 = 1) the function δ satisfies

0 = g′′1δ(g
′′
2)− δ(g′′1g′2) + δ(g′′1) . (4)

In other words, δ satisfies the equation (3). So 1-cochains correspond to sections.

• Furthermore, f is a coboundary if and only if there exists a Z[G]-linear morphism
f̃ : Z[G]→ G′ such that

f(g′′0 |g′′1) = f̃(g′′0)− f̃(g′′1) ,

i.e. iff there exists an g′ = f̃(1) ∈ G′, such that

δ(g′′1) = f(1, g′′1) = f̃(1)− f̃(g′′1) = g′ − g′′1(g′) . (5)

By Observation 7.4.1.7 this is the case if and only if the section is equivalent to the zero
section s0.

In preparation for Theorem 7.4.3 we describe the elements of the cohomology group
H2(G′′, G′) as equivalence classes of functions f : G′′ ×G′′ → G′ with

(df)(g′′1 , g
′′
2 , g
′′
3) = g′′1 .f(g′′2 , g

′′
3)− f(g′′1g

′′
2 , g
′′
3) + f(g′′1 , g

′′
2g
′′
3)− f(g′′1 , g

′′
2) = 0 , (6)

modulo the equivalence relation generated by declaring two functions equivalent if they differ
by an expression of the form

da(g′′1 , g
′′
2) := a(g′′1)− a(g′′1g

′′
2) + g′′1 .a(g′′2)

for some function a : G′′ → G′.
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Theorem 7.4.3 Let G′′ be a group, that acts on the abelian group G′ by group automor-
phisms. Then there exists a bijection from the set of extensions of G′′ by G′ up to equivalence
as in Observation 7.4.1.1 to H2(G′′, G′), where we consider the abelian group G′ as G′′-module
as before.

Proof. • Let E : 1→ G′ → G→ G′′ → 1 be such an extension. In general, one will not be
able to find a section G′′ → G that is a group homomorphism. We thus choose a section
s : G′′ → G of sets. Then we have s(g′′1)s(g′′2)s(g′′1g

′′
2)−1 in ker(G→ G′′) = Im (G′ → G) ∼=

G′. We can thus define the function

fE,s : G′′ ×G′′ → G′

(g′′1 , g
′′
2) 7→ s(g′′1)s(g′′2)s(g′′1g

′′
2)−1 .

One can check that the cocycle condition (6) is satisfied; so fE,s defines a class in
H2(G′′, G′).

• If s′ : G′′ → G is another section for the same extension, then we set a := s′s−1 : G′′ → G′.
Then we have

(fE,s′ − fE,s)(g′′1 , g′′2) = a(g′′1)s(g′′1)a(g′′2)s(g′′2)s(g′′1g
′′
2)−1a(g′′1g

′′
2)−1s(g′′1g

′′
2)s(g′′2)−1s(g′′1)−1

= a(g′′1)s(g′′1)a(g′′2)s(g′′1)−1a(g′′1g
′′
2)−1

= a(g′′1)− a(g′′1g
′′
2) + g′′1 .a(g′′2) = (da)(g′′1 , g

′′
2) .

Here we have written the last row additively, since all terms lie in the abelian subgroup
G′. The class of f in H2(G′′, G′) is thus independent of the choice of the section s. One
also checks that equivalent extensions define the same function f .

• Conversely, let an arbitrary function f : G′′ ×G′′ → G′ be given. We shall try to define a
group structure Gf on the set G′ ×G′′ by setting:

(g′1, g
′′
1)(g′2, g

′′
2) := (g′1 + g′′1 .g

′
2 + f(g′′1 , g

′′
2), g′′1g

′′
2)

The projection Gf → G′′ gives a short exact sequence Ef : 1 → G′ → Gf → G′′ → 1.
A straightforward check shows that Gf has inverses. However, the associativity of the
multiplication is not automatic:

[(g′1, g
′′
1)(g′2, g

′′
2)](g′3, g

′′
3) = (g′1 + g′′1 .g

′
2 + f(g′′1 , g

′′
2), g′′1g

′′
2) · (g′3, g′′3)

= (g′1 + g′′1 .g
′
2 + f(g′′1 , g

′′
2) + (g′′1g

′′
2).g′3 + f(g′′1g

′′
2 , g
′′
3), g′′1g

′′
2g
′′
3) .

(g′1, g
′′
1)[(g′2, g

′′
2)(g′3, g

′′
3)] = (g′1, g

′′
1)(g′2 + g′′2 .g

′
3 + f(g′′2 , g

′′
3), g′′2g

′′
3)

= (g′1 + g′′1 .(g
′
2 + g′′2 .g

′
3 + f(g′′2 , g

′′
3)) + f(g′′1 , g

′′
2g
′′
3), g′′1g

′′
2g
′′
3)

The G′-component of the difference of the two expressions is:

g′′1f(g′′2 , g
′′
3)− f(g′′1g

′′
2 , g
′′
3) + f(g′′1 , g

′′
2g
′′
3)− f(g′′1 , g

′′
2) = (df)(g′′1 , g

′′
2 , g
′′
3) .

Thus f defines a group structure if and only if df = 0. If f = fE,s, then Ef is equivalent
to E, and so we obtain a bijection{

extensions of G′′ by G′

modulo equivalence

}
∼=
{

functions f : G′′ ×G′′ → G′ with df = 0
modulo functions da for a : G′′ → G′

}
.

By the preceding discussion, the right-hand side is exactly H2(G′′, G′).

Observation 7.4.4

159



• Let K/k be a Galois extension and G := Gal(K/k) the Galois group. Then the groups
Hn(G,K∗) are called the Galois cohomology groups of the extension K/k with coefficients
in K∗.

• A version of Hilbert’s Theorem 90 says that for finite Galois extensions H0(G,K∗) = k∗

and H1(G,K∗) = 1.

• We first investigate H1. A function ϕ : G→ K∗ that represents a class in H1(G,K∗) = 1
satisfies by (4) the equation

ϕ(στ) = τ (ϕ(σ))ϕ(τ) . (∗)

Classically such functions are called crossed homomorphisms. By equation (5) this is a
coboundary if and only if there exists an element α ∈ K∗ such that

ϕ(σ) =
α

σ(α)
.

In that case one says that the crossed homomorphism splits. Hilbert’s Theorem 90 says
that this is indeed the case for finite Galois extensions.

• If the field extension is cyclic, i.e. G = 〈σ〉, then for every crossed homomorphism ϕ we
have:

N(ϕ(σ))
def
= σn−1(ϕ(σ)) . . . σ2(ϕ(σ)) · σ(ϕ(σ)) · ϕ(σ)
(∗)
= σn−1(ϕ(σ)) . . . σ2(ϕ(σ)) · ϕ(σ2)
(∗)
= σn−1(ϕ(σ)) . . . ϕ(σ3) = ϕ(σn) = 1

One can also check that, conversely, for every element γ ∈ K of norm N(γ) = 1 there
exists a unique crossed homomorphism that is defined on the generator by ϕ(σ) = γ.

• For cyclic field extensions we recover the classical statement: an element γ ∈ K∗ has norm
1 if and only if there exists a crossed homomorphism with ϕ(σ) = γ, i.e. an α ∈ K∗ with
γ = ϕ(σ) = α

σ(α)
. This statement is used to investigate under which conditions K can be

obtained from k by adjoining an nth root of unity.

The cohomology H2(G,K∗) also has classical applications. For additional background for
the following remarks we refer to [FD1993].

Definition 7.4.5

1. An algebra A over a commutative ring R is called central, if the centre is Z(A) = R.

2. An algebra is called central simple, if it is central and simple, i.e. if it is central has no
non-trivial two-sided ideals.

Examples 7.4.6

1. The quaternions H are a central simple R-algebra.

2. Every full matrix algebra M(n× n, k) over a field k is central simple.

3. A proper field extension K/k is not central simple, because Z(K) = K ) k.

4. Division algebras are not necessarily central simple, e.g. the real division algebra C is not
semisimple.

Remarks 7.4.7
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1. If R and S are central simple algebras, then so is R⊗S. For example, the algebras H⊗RH
and M(n× n, k)⊗ S for a central simple algebra S are central simple.

2. For a finite-dimensional central simple k-algebra R one has R⊗Ropp ∼= M(n×n, k) with
n := dimk R.

3. Let D be a division algebra over k. A field extension K/k such that DK := D ⊗k K ∼=
M(n× n,K) is called a splitting field for D.

Every maximal subfield K ⊂ D is a splitting field of D and [K : k] =: n.

Definition 7.4.8

1. Let S and T be finite-dimensional central simple k-algebras. We say that S and T are
similar, S ∼ T , if one of the following equivalent conditions are satisfied:

(a) If S ∼= M(n × n,D) and T ∼= M(m × m, E) with division algebras D,E, then
D ∼= E.

(b) There exist m,n, such that S ⊗k Mm(k) ∼= T ⊗k Mn(k).

(c) There exist m,n, such that Mm(S) ∼= Mn(T ).

2. The Brauer group Br(k) of a field k is defined on the set of equivalence classes of finite-
dimensional simple k-algebras under similarity. The group operation is induced by the
tensor product and the class [k] is the neutral element.

The Brauer group is abelian and it classifies division algebras over k.

Examples 7.4.9

1. We have Br(k) = 0 if k is an algebraically closed field, because in that case, there exist
no non-trivial division algebras.

2. For a finite field k we have Br(k) = 0. In particular, is every finite division ring is
commutative (Wedderburn’s theorem).

3. We have Br(R) ∼= Z/2Z. A representative of the generator are the quaternions H. Indeed,
one has H⊗R H ∼= M(4× 4,R).

Remark 7.4.10

1. For every field extension K/k there exists a homomorphism, given by extension of scalars:

Br(k) → Br(K)
[S] 7→ [SK ] := [S ⊗k K]

2. The relative Brauer group is

Br(K/k) = ker(Br(k)→ Br(K))

i.e. the set of finite-dimensional central division algebras over k, which split over the field
K.

3. One can show that for every division algebra D with centre k and dimkD = n2, there
exists a finite Galois extension K/k, such that D splits over K.

4. Thus one has Br(k) = ∪Br(K/k), where K runs over all finite Galois extensions of k.
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5. We have the following isomorphism of groups

Br(K/k) = H2(Gal(K/k), K∗)

Here we note that for a 2-cocycle aσ,τ with σ, τ ∈ G := Gal(K/k), the freely generated
K-vector space over G with multiplication

(αeσ) · (βeτ ) := ασ(β)aσ,τeστ

is a central simple algebra.

Let S be a central simple algebra and K a field, over which S splits. We first observe that
by the Skolem-Noether theorem for every σ ∈ G there exists a xσ ∈ S with

σ(a) = xσ · a · x−1
σ ,

and the xσ unique up to factors in K. Thus there exists a function a : G×G→ K∗ with

xσxτ = a(σ, τ)xστ .

From the associativity of the multiplication of the xσ

xρa(σ, τ) · xστ = a(ρ, σ)xρσ · xτ
and thus

ρ(a(ρ, σ))a(ρ, στ)xρστ = a(ρ, σ)a(ρσ, τ)xρστ

we deduce that a satisfies the equation (6), and thus defines a class in H2(G,K∗). One
also shows that the family (xσ)σ∈G forms a K-basis of S.

A Zorn’s lemma

Let S be a set. We recall the following notions and results from set theory:

1. A partial order on S is a relation x ≤ y with the following properties:

x ≤ x reflexive ,
x ≤ y ∧ y ≤ z ⇒ x ≤ z transitive ,
x ≤ y ∧ y ≤ x ⇒ x = y antisymmetric .

2. A total order on S is a partial order, for which any two elements are comparable:

x, y ∈ S ⇒ x ≤ y or y ≤ x .

3. Let S be partially ordered and T ⊂ S a subset.

A element b ∈ S is called an upper bound for the subset T , if

x ≤ b for all x ∈ T .

4. Let S be partially ordered. An element m ∈ S is called a maximal element, if

m ≤ x ⇒ m = x .

A maximal element need not be unique. For example, consider the set of ideals of the
rings Z with partial ordered given by inclusion. All prime ideals (p) (with p a prime) are
maximal.

5. A partially ordered set S is called induktively ordered, if every non-empty, totally ordered
subset of S has an upper bound.

6. Zorn’s lemma Let S be a non-empty, inductively ordered set. Then S has maximal ele-
ments.
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B Glossary German-English

For the benefit of German speaking students, we include a table with German versions of
important notions.

English German
abelian Lie algebra abelsche Lie-Algebra
absolutely simple object absolut einfaches Objekt
adjoint functor adjungierter Funktor
alternating algebra alternierende Algebra
augmentation ideal Augmentationsideal
character Charakter
class function Klassenfunktion
coinvariant Koinvariante
companion matrix Begleitmantrix
convolution product Konvolutionsprodukt, Faltungsprodukt
counitality Kounitarität

derivation Derivation
enriched category angereicherte Kategorie
essentially small category wesentlich kleine Kategorie
exterior algebra äußere Algebra

forgetful functor Vergissfunktor
free vector space freier Vektorraum
invariant factor Invariantenteiler
Horseshoe lemma Hufeisenlemma
left adjoint functor linksadjungierter Funktor
left module Linksmodul
monic polynomial normiertes Polynom
opposite algebra opponierte Algebra

projective module projektiver Modul
pullback of a representation Pullback einer Darstellung

representation Darstellung
right adjoint functor rechtsadjungierter Funktor

semisimple algebra halbeinfache Algebra
semisimple module halbeinfacher Modul (der)
separable algebra separable Algebra
simple module einfacher Modul (der)
trace Spur
trivial module trivialer Modul (der)
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generator of a category, 47
group extension, 155
group ring, 8
groupoid, 41

half exact functor, 74
hereditary ring, 85
Hilbert’s basis theorem, 117
homology, 124, 149
homology of a cyclic group, 149
homology of the group Z, 150
homotopy, 126

identity functor, 43
image of a morphism, 73
indecomposable module, 34
indecomposable representation, 34
induction, 62
inductively ordered set, 161
initial object, 51
initial ring, 2
initial universal morphism, 66
injective module, 32
injective object, 76
injective resolution, 122
inner automorphism, 153
inner direct sum, 15
integral domain, 14
intertwiner, 10
invariant factors, 91
invariants, 148
irreducible representation, 33
isomorphic categories, 44
isomorphic objects, 40

isotypic component, 96

Jacobson density theorem, 101
Jordan normal form, 92
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unital ring, 1
unitarian trick, 98
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